

BIRMINGHAM—MUMBAI

Designing API-First Enterprise
Architectures on Azure
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means, without the
prior written permission of the publisher, except in the case of brief
quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the
accuracy of the information presented. However, the information contained in
this book is sold without warranty, either express or implied. Neither the
author(s), nor Packt Publishing or its dealers and distributors, will be held
liable for any damages caused or alleged to have been caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all
of the companies and products mentioned in this book by the appropriate use
of capitals. However, Packt Publishing cannot guarantee the accuracy of this
information.

Group Product Manager: Richa Tripathi

Publishing Product Manager: Kushal Dave

Senior Editor: Ruvika Rao

Content Development Editors: Ananya Endow, Kinnari Chohan

Technical Editor: Pradeep Sahu

Copy Editor: Safis Editing

Project Coordinator: Ajesh Devavaram

Proofreader: Safis Editing

Indexer: Subalakshmi Govindhan

Production Designer: Alishon Mendonca

First Published: July 2021

Production reference: 1160721

Published by Packt Publishing Ltd.

Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-80181-391-4

www.packt.com

http://www.packt.com

To my mother, Krishna Chatterjee, and my father, the late Nirmalendu
Chatterjee, whose countless sacrifices have made me the man that I am
today.

To my elder brother, Abhijit, without whose support and guidance I
wouldn't have come this far.

To my loving wife, Tamanna, for believing in me and keeping me
motivated.

To my daughter, Tanusha, who makes me a proud father.

– Subhajit Chatterjee

Contributors

About the author
Subhajit Chatterjee completed his bachelor's degree in engineering from
NITK, Surathkal, India, way back in 2002. He also holds a postgraduate
diploma in information technology from Amity University. Aside from this,
he has undertaken various other online certifications that have helped him to
learn and grow as a software engineering professional.

Subhajit has close to two decades of exposure to designing, implementing,
and managing software development projects, using Microsoft and open
source technologies. He currently works as a solutions architect with
Microsoft Consulting Services, leading large and complex projects in Azure,
IoT, enterprise integrations, web applications, and mobility space.

Subhajit loves to solve problems and has had the privilege of working with
customers across the globe. He is passionate about sharing what he learns
with the community. He believes in continuous learning and enjoys coaching
and mentoring others for professional enrichment.

I wish to thank the people who have been close to me and supported me,
especially all my colleagues and mentors who have shared their
knowledge and experiential learning with me.

About the reviewer
Niloshima Srivastava has around 12 years of experience working as
Software Architect in a Product Based Organization. She is a graduate in
CSE and holds several Cloud Certifications on Azure/AWS. She has been an
evangelist when it comes to Microsoft platforms, augmented by being a
hands-on developer, solution architect, and outstanding illustrator of design
concepts and methodology. Not the least but proven track records even in
training and orchestrating what she has learned to new rising developers
across various platforms on various forums.

Table of Contents

Preface

Section 1: API-Led Architecture in the
Digital Economy

Chapter 1: Evolution of Enterprise Solution
Architectures

History of application architectures in an
enterprise
From monoliths to SOA and microservices
IT strategies in the modern world
Outlook for digital transformation
The emergence of API-led architectures
The complexity problem
The importance of API-led architecture
Case study
About Packt Insurance Inc.
Summary
Further reading

Chapter 2: APIs as Digital Connectors

The connected enterprise
The role of APIs in digital experiences
Major benefits of API-led connectivity
APIs serve as digital enablers for an enterprise
An API is a digital service
API architecture within an enterprise
API classification by management and access
pattern
Packt Insurance Inc. – an API-led architecture
strategy
Domain decomposition
Service and persona map
API composability using microservices
Summary
Further reading

Section 2: Build Reliable API-Centric
Solutions

Chapter 3: Architecture Principles and API
Styles

Architecture principles
Evolve architecture blueprints iteratively
Constructs of an API
API operations or service contract
Data contract or entity schema
API endpoint
Communication protocol (application layer)
Input and output – the request-response pair
Popular API architecture styles
The tunneling or RPC style
RI (or REST) style
Query or GraphQL style
Event-driven or asynchronous messaging style
Hypermedia style
Other API styles
Finding the right style for your API use cases
Serverless APIs – accelerators for innovation
Benefits of using serverless computing for APIs
Serverless architecture use cases

Implementing API-led architectures in Azure
Reference architecture for an enterprise API
platform
Azure services for hosting API solutions
Service Fabric
Additional services for building end-to-end
solutions
Case study elaboration – Packt Insurance Inc.
API style fitment analysis
Microservices and API styles
API platform architecture
Summary
Additional reading

Chapter 4: Assuring the Quality of the API
Service (or Product)

The ISO 25010 standard for software product
quality
Functional Suitability
Operability/Usability
Reliability
Performance Efficiency
Security
Compatibility
Maintainability
Portability
Architecture Tradeoff Analysis Method (ATAM)
The Azure Well-Architected Framework
Benefits of using WAF
WAF recommended practices
API security considerations
Core principles – the Security Frame analysis
The Security Development Lifecycle (SDL)
Reliability through scale, performance,
availability

Site Reliability Engineering (SRE)
How do you ensure appropriate reliability?
Commonly used SLOs for an API service
Defining, implementing, and measuring SLI
metrics for an API platform
Using SLIs to calculate the initial SLOs for your
API service
Modeling performance based on scale
requirements
The API (or application) performance
management lifecycle
Checklist for development teams
High-availability patterns
High-availability calculation
Architecting for operations
Logging, monitoring, and alerts
Feature flags
Understanding maintainability
Proactive maintainability
Reactive maintainability
Tracking objectives using a quality dashboard
Case study elaboration – Packt Insurance Inc.
Important SLOs for the API platform

Architecture backlog – focus on quality and
handle technical debt
Summary
Further reading

Chapter 5: RESTful APIs – the New Web

Technical requirements
Understanding RESTful APIs
Using HTTP verbs for your CRUD actions
correctly
History of inter-machine application
communication
REST architecture constraints
Advantages and challenges of building a
RESTful API
Advantages
Common challenges
Exploring the checklist for building RESTful
APIs
Contract-first design for your REST APIs
OpenAPI Specification
OpenAPI definition file format
Visualizing the API definition file using the
Swagger extension in VSCode
Summary
Further reading

Chapter 6: API Design Practices

Understanding API design considerations
Coupling
Chattiness
Client complexity
Cognitive complexity
Caching
Discoverability
Versioning
Exploring recommended practices
Design should adhere to the SOLID principles
Design should be flexible to change
Use the Decision Analysis and Resolution
technique
Produce documentation as per industry
standards
Secure by design
Optimized for response time
API testing
Size and granularity
Content negotiation

Prefer stateless over stateful services
User-digestible response codes and messages
Using cloud design patterns
Implementing an API service using design
patterns
Data-driven CRUD API
Command and Query Responsibility Segregation
(CQRS)
Event Store API (Event Sourcing)
Clean architecture
Backends for Frontends (BFF)
Developer toolbox
Summary
Further reading

Chapter 7: Accelerating through DevOps
Essentials

Business objectives and key results
The DevOps Dojo framework
The benefits of having a good DevOps strategy
DevOps metrics and their importance
Identifying the maturity index for your
enterprise
The power of GitHub and Azure DevOps
DevOps in practice
Capability – continuous planning
Capability – continuous integration
Capability – continuous delivery
Capability – continuous operations
Capability – continuous quality
Capability – continuous security
Capability – continuous collaboration
Capability – continuous improvement
Pillar – culture
Pillar – lean product
Pillar – architecture

Pillar – technology
Tracking DevOps initiatives in the backlog
Summary
Further reading

Section 3: Deliver Business Value for a
Modern Enterprise

Chapter 8: API-Centric Enterprise
Integrations

Exploring EAI
Key initiatives toward a digital enterprise
Modernizing legacy applications using APIs
API use cases in the enterprise
The rise of iPaaS
What is an iPaaS platform?
Types of integrations
Benefits of iPaaS
iPaaS architecture for the Azure cloud
Implementing EAI patterns using iPaaS
API management
API gateways
API publishing, control, and governance
Developer portal
API versioning and life cycle management
Analytics and metrics
Understanding Azure Integration Services
iPaaS building blocks of Azure – explained
Using Azure Integration Services

Summary
Further reading

Chapter 9: APIs as a Monetized Product

APIs as digital assets
Growth of the API economy
The API value chain
Exploring business drivers of monetization
Expand the channels of revenue streams
Capture analytics for improved marketing
strategies
Enhance brand value through customer loyalty
Foster innovation through new product
capabilities
Stay relevant in the marketplace
API monetization models
Free
Consumer pays
Consumer gets paid
Indirect monetization
API productization in Azure
Requirements summary
Solution approach
API products and publishing in APIM

Subscription management
API consumption – rate limits and quotas
Measuring API consumption
API analytics
Summary
Further reading
Why subscribe?

Other Books You May Enjoy

Preface
Rapid adoption of cloud technologies has revolutionized the way modern-day
applications are architected and implemented. Solution architects and IT
decision-makers are constantly faced with the challenge to quickly adapt to
the latest technology trends to establish a competitive advantage in the
marketplace. Gartner has predicted that by 2025, about 80% of enterprises
will have shifted their operations to the cloud. Hence, it has become even
more imperative that enterprises pay attention to their digital transformation
roadmaps to benefit from their cloud-first and mobile-first initiatives.
Tactically, this means a lot of changes on the ground, including reinventing
business processes, adopting agile and DevOps best practices, and even
embarking on the modernization of operations.

API-led architecture is not something new – rather, it has just become a lot
more relevant and important in today's world. Cloud computing offers three
key benefits: flexibility, efficiency, and strategic value. API-led connectivity
has changed the way enterprises interact with their customers and partners.
Customers today are very demanding. They expect businesses to be agile and
adapt to their demands. They prefer a simple and intuitive approach to
meeting their needs. They are open to the use of technology and apps to get
the job done in just a few steps. Thus, enterprises are required to utilize the
insights derived from analyzing customer behavior as the basis for their
digital innovation strategies.

Over the past few years, I have worked with multiple enterprise customers to
define their blueprints for a robust and reliable API-led solution. However,

the common challenge has been in getting them to understand the benefits of
this approach, as it requires some initial investment and work prioritization. It
was always a hard sell unless the key stakeholders had prior experience with
implementing solutions using a service-oriented architecture (SOA)
approach. Many lacked the appetite to incur any additional complexity on top
of what they were used to. It was also a revelation to me that teams weren't
too well versed in the concept of microservices. Everybody wanted to do it,
but nobody seemed to know how to approach it. A few believed that splitting
a large monolith into smaller services was, in effect, building microservices.
While this was still a good starting point, it lacked a futuristic vision, as the
many other aspects of a microservices architecture were not considered as
part of the design process. The technical teams were also getting used to the
new way of building solutions and would often miss out on the fundamentals,
leading to problems later in the life cycle. Teams often lacked a production-
first mindset as many of the important architecture-critical requirements were
deferred to later.

In this book, it has been my endeavor to provide a glimpse of the "whole nine
yards" that is essential for the successful delivery of an API-led enterprise
solution. This book focuses on the latest emerging trends in the industry,
supplementing theoretical concepts with real-world scenarios and examples
to help you grasp the concepts more easily. The book touches upon the
important principles and practices that can eventually serve as a checklist for
development teams. While I have used the Microsoft Azure cloud as the
platform of choice, the topics discussed are valid even for a multi-cloud
scenario as well.

After reading this book, you will be well versed in how to architect, design,
implement, deploy, and maintain a digital service.

Who this book is for
This book is meant to serve as a ready reckoner for solution architects,
developers, and IT and business decision-makers as they are taken through a
journey showing how to approach their API-led connectivity requirements.
The book has been written from a practitioner's point of view, with lots of
tips, practical guidance, and additional references that will surely provide
clarity of thought for developers, allowing them to confidently prepare for
their next API-first architecture implementation.

What this book covers
Chapter 1, Evolution of Enterprise Solution Architectures, gives you a
background on the evolution of enterprise architectures, from SOA to a more
microservices-based approach, and discusses how the adoption of open
standards will help advance the building of interconnected experiences in the
evolution process.

Chapter 2, APIs as Digital Connectors, walks you through the concept of a
connected enterprise, emphasizing the role and importance of APIs in fueling
the growth of the digital economy.

Chapter 3, Architecture Principles and API Styles, provides an overview of
important architecture principles that are the basis for the foundation of any
API platform. The chapter also covers the popular architecture styles that are
frequently used in an enterprise and how they can be implemented in the
Azure cloud.

Chapter 4, Assuring the Quality of the API Service (or Product), focuses on
the quality attributes that are critical for the success of API solutions. It also
explains how to make use of the Azure Well-Architected Framework to
design, implement, and measure the quality of service for your API solutions.

Chapter 5, RESTful APIs – The New Web Standard, covers some of the best
practices that must be followed while designing and implementing RESTful-
style API interfaces, which are becoming a new web standard.

Chapter 6, API Design Practices, discusses the important design practices
that must be followed while building your API-centric solutions. It also

briefly covers the different patterns that are commonly used for implementing
your API microservices.

Chapter 7, Accelerating through DevOps Essentials, focuses on the essential
DevOps practices that must be followed by the engineering teams to drive
greater IT maturity across the broad spectrum of the enterprise.

Chapter 8, API-Centric Enterprise Integrations, takes a deeper look into
some real-world enterprise integration scenarios and considers how the Azure
Integration Services offering can be utilized for this purpose.

Chapter 9, API as a Monetized Product, discusses how enterprises can realize
greater business value and improve their revenue streams by applying an
intelligent productization strategy for their API assets.

To get the most out of this book
This book is intended for audiences who are likely to have a role in either
defining and/or implementing API-centric solutions. Hence, it is
recommended that you apply the inferences shared to your own practical
requirements and do further self-study and analysis to better understand the
concepts presented.

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-
cdn.com/downloads/9781801813914_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

Code in text: Indicates code words in text, database table names, folder
names, filenames, file extensions, pathnames, dummy URLs, user input, and
Twitter handles. Here is an example: "For example, say the URI
/api/policies/id returned the policy resource for the specified ID. Then the
URL /api/policies/id/assets will return all the assets linked to the respective
policy."

A block of code is set as follows:

GET /policy/getPolicy?id=POLICY1122334455 HTTP/1.1

Host: api.contoso.inc

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

https://api.packinsurance.com/quotingservice/getquote?api-version=1.0

https://api.packinsurance.com/quotingservice/getquote?api-version=2.0

Bold: Indicates a new term, an important word, or words that you see on
screen. For example, words in menus or dialog boxes appear in the text like
this. Here is an example: "Observe that Quote Service (Basic) is accessible
to Guests."

TIPS OR IMPORTANT NOTES
Appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book,
mention the book title in the subject of your message and email us at
customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our
content, mistakes do happen. If you have found a mistake in this book, we
would be grateful if you would report this to us. Please visit
www.packtpub.com/support/errata, selecting your book, clicking on the
Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
internet, we would be grateful if you would provide us with the location
address or website name. Please contact us at copyright@packt.com with a
link to the material.

If you are interested in becoming an author: If there is a topic that you
have expertise in, and you are interested in either writing or contributing to a
book, please visit authors.packtpub.com.

Share Your Thoughts
Once you've read Designing API-First Enterprise Architectures on Azure,
we'd love to hear your thoughts! Please click here to go straight to the
Amazon review page for this book and share your feedback.

Your review is important to us and the tech community and will help us make
sure we're delivering excellent quality content.

http://www.packtpub.com/support/errata
http://authors.packtpub.com

Section 1: API-Led Architecture in the
Digital Economy
In the first part of the book, you will discover why API-based integration
architectures within enterprises are increasing, and how they are beneficial
compared to traditional approaches to expedite digital transformation in a
cloud-first, mobile-first world.

This section includes the following chapters:

Chapter 1, Evolution of Enterprise Solution Architectures

Chapter 2, APIs as Digital Connectors

Chapter 1: Evolution of Enterprise Solution
Architectures
An enterprise application is a large software system platform, typically
comprising multiple applications that are designed to assist the organization
in solving its business problems in a well-coordinated fashion. These
platforms are complex, generally evolve over a period, and must be scalable
and extensible. They are largely driven by the strategic technology initiatives
that are identified to accomplish the vision and business objectives of the
organization.

The purpose of this chapter is to share insights on how enterprise solution
architectures have evolved from being a collection of standalone monoliths to
service-oriented architectures (SOA) to a more modern microservices-
based solution approach in recent times.

Over the past decade, there has been a significant rise in the demand for
omnichannel and interconnected experiences. Be it the consumerization of IT
or mobile-first applications, emergingtechnology trends have created a
compelling need for businesses to invest in cloud-native applications
(CNCF) or integrate with Software-as-a-Service (SaaS) product offerings.
If you are new to these terms, a brief explanation follows:

CNCF: Cloud-native applications are typically modern applications
designed to run on the cloud using the recommended cloud architecture
and design principles. They are mostly microservices hosted using
managed services to offer great scale and performance.

SaaS: Software as a Service refers to the model of hosting a software
solution or product on the cloud. This is accessible over the internet using
a subscription or pay-as-you-go model.

NOTE
You can make use of the links provided in the Further reading section to understand the
preceding concepts in greater detail.

In this chapter, we are going to cover the following main topics:

History of application architectures in an enterprise

IT strategies in the modern world

The emergence of API-led architectures

By the end of this chapter, you will understand how to prioritize your IT
solutions strategy for any upcoming digital transformation projects.

DISCLAIMER
The topics presented in this chapter assume that you have a basic level of understanding
of solution architectures in an enterprise context. At the end of the chapter, additional
suggested reading links have been provided for you to review and explore more on the
various topics.

History of application architectures in an
enterprise
A solution architecture is typically the outcome of the bundle of ideas and
experiences that you may apply to any specific business and customer context
in order to meet a specific vision, within the constraints of timelines and
budget availability.

Over the past two to three decades, organizations have progressively invested
in building enterprise applications and systems that aim to do the following:

Provide a competitive advantage.

Reduce wastage and manual effort.

Limit costs to improve revenue and profit.

The primary goals have always revolved around a few key priorities, such as
improving business processes for greater productivity, timely decision-
making ability, and the seamless flow of information across various siloed
systems and channels to foster more effective coordination among various
departments and personnel within the enterprise.

From monoliths to SOA and microservices

With the evolution of the World Wide Web around early 2000, the adoption
of IT within enterprises gained momentum. Information was accessible
remotely, thereby opening up new avenues of business collaboration:

Figure 1.1 – Solution architecture trends

Since early 2010, enterprises have started leaning toward mobile apps as their
primary channel to offer an online experience to their customers. Over the
past decade, there have been tremendous advances in the field of mobile
technology, especially with internet connectivity and mobile devices being a
viable alternative to desktop computing devices. This has led to a surge in the
present-day user-friendly business apps, enabling users to get a job done from
anywhere in just a few steps.

Furthermore, the evolution of cloud computing technologies has
revolutionized how enterprises plan to deploy their line-of-business (LOB)
applications. CNCF and online services (SaaS) served as game-changers for
enterprises. The cloud offered the promise of elastic scale, with high
performance and availability. This was possible through managed services
and scaling on-demand capabilities available on all public clouds. Basically,

the cloud provider would manage the underlying server infrastructure to meet
the workload demands. This allowed enterprises to modernize their business
and work environments.

There was a gradual decline in the traditional development style of building
applications, leading to a more microservices-based approach. By making use
of this approach, complex and massive distributed systems can easily be
broken down into smaller components, also termed microservices.

Microservices are self-contained and can be independently deployed and
scaled. These microservices perform just one business function and are
relatively easy to change and upgrade without impacting the broader
ecosystem of services. This approach allows enterprises to take a more
customer-centric approach and react quickly to market demands. The
differences between microservices and monoliths are explained later in this
chapter.

As was evident in the years that followed, Solution Architecture Blueprints
progressively shifted from monoliths to microservices-based architectures,
preferably deployed in the cloud. With these changing trends, developers
shifted their focus to building robust API platforms comprising granular and
loosely coupled microservices, with each service acting as a business sub-
system serving a specific purpose within the ecosystem. These API platforms
can be easily integrated with, and consumed from, lightweight mobile or web
apps.

For your understanding, the following are the differences between
microservices, mini-services, and monoliths (or macroservices):

Microservice: This refers to a granular unit of a business functionality
that can be independently developed, deployed (as a service), and
managed without having a significant dependency on other services
around it. It is loosely coupled and is based on the single-responsibility
principle.

Mini-service: This refers to a group or collection of microservices that
come together as a unit to solve a specific business functionality.
Typically, this group of microservices is deployed on a common
infrastructure and shares any underlying database.

Monolith or macroservice: This refers to the legacy way of building
applications, wherein all business services were deployed as a single
package on an application server. The components in the system were
tightly coupled and have less complexity in both design and deployment.
System upgrades were expensive, even requiring downtime.

NOTE
Refer to the following article to understand more about the differences:
https://thenewstack.io/miniservices-a-realistic-alternative-to-microservices/.

IT strategies in the modern world
The unprecedented disruption to economies as a result of the COVID-19
pandemic has forced CTOs to rethink and reinvent their IT strategies and
roadmaps. It was obvious that companies had to expedite their digital
transformation journeys to stay in business, or else they risked losing out to
their competitors.

https://thenewstack.io/miniservices-a-realistic-alternative-to-microservices/

The constantly evolving digital ecosystem is driving companies to reimagine
their relationships with their customers, suppliers, and employees by
engaging in ways that were not possible before.

Let's explore the motivating forces driving digital transformation initiatives.

Outlook for digital transformation

As per Gartner, for success in this new era, the corporate vision for all
enterprises must shift toward business outcome-driven strategies. The
consumerization of IT has led to the enormous growth and adoption of
mobile and cloud technologies, both of which are now considered critical
enablers for digital transformations:

Figure 1.2 – Mobile technology market size as of March 31, 2021

In this rapidly changing competitive landscape, companies that demonstrate
greater adaptability are able to survive through the disruption in the industry
as different business models are constantly evolving, along with different
ways to deliver a service.

However, it must also be noted that digital transformation is not easily
achievable. Business and IT leaders must strive to remove the boundaries of
corporate silos and innovate in terms of their IT roadmaps to create more
inclusive and interconnected digital experiences for their customers, partners,
and employees.

In summary, to address the compelling demands of the market and to
establish a truly distinct and differentiated offering, enterprises must propel
their digital transformation agendas toward the following:

Adopting an API-first architecture to support resilient operations

Decoupling frontend presentation from backend data functionality

Capturing and visualizing data-driven business insights to improve
customer experiences

Building cloud-native hyperscale applications and (API) platforms

Hence, it is quite evident as to why API-led architectures are the way forward
for building enterprise applications.

The emergence of API-led architectures
The term Application Programming Interfaces, or APIs, was coined way
back in the 1940s to establish some standardization in data formats,
communication protocols, conventions to follow, and so on when different
computing systems interacted with each other. Over time, API-based
integration has become the de facto standard for interactions between
applications, be it client-server or process-to-process communications.

In the new normal, enterprises rely heavily on APIs and microservices to
build and connect applications. There has been a paradigm shift on the basic
premise while building applications. Modern era experiences must aid in the
following:

Simplifying the business processes: For example, in a retail kind of scenario,
the tracking of inventoried items can be simplified by creating an API-based
system over your inventory management system. These APIs can be
consumed by different applications targeted at the store manager, point of
sale, or back-office clerk to view and update the same.

Improving the productivity of the workforce: For example, employees
can make use of a variety of devices with apps that integrate with the
backend APIs to get their work done. This will render them mobile while
publishing real-time updates.

Providing omnichannel access to customers: For example, customers
today prefer to make use of both mobile and web apps to access any
service or solutions.

Achieving seamless data integration with channel partners and vendors:
API-based integration platforms in the cloud allow easy integration and
access to enterprise workflows.

Ensuring data privacy and compliance: The standardization of IT policies,
coupled with stricter governance over API platforms, plays a big role in
preventing any security risks.

The core objective has always been to reduce complexities when dealing with
people, processes, and tools within an enterprise.

The complexity problem

Large enterprises typically have multiple IT systems to cater to the need of
various departments so as to support the different business processes. This
typically leads to the creation of silos, requiring the duplication of data across
different systems.

The focus of discussion of most enterprise architects is the integration
between these systems and how to constantly evolve them to support the
demands of the business. Considering that more than 80% of IT budgets are
spent on maintaining and managing these large business systems, the return
on investment (ROI) is highly dependent on the ease with which additional
capabilities can be rolled out without impacting the existing rhythm of
business.

APIs, being the basic building blocks of any digital footprint, act as a catalyst
to reduce the complexity problem. APIs are relatively easy to develop and
deploy. A good ecosystem of APIs within an enterprise can expedite the
revenue generation process through the direct or indirect utilization of the
underlying exposed data. Insights derived from data can serve as essential
feedback to optimize both the business processes and associated IT systems.

The importance of API-led architecture
With data being the new currency for digital transformations, API-led
architectures come to the rescue here. Almost all enterprises can be modeled
as islands of discrete business capability, with some overlap for a cohesive
operating model. This approach helps in defining the boundaries for the
various systems and sub-systems that must be provisioned, and what

interfaces must be developed to allow for data collection and exchange in a
secured manner.

As the technology trends suggest, enterprises are increasingly adopting an
API-led architecture strategy as it enables them to open their IT systems to
external clients, business partners, and even third-party developers. The APIs
serve as a black box, encapsulating all the business validations and rules that
may apply to any process flow. In today's application development
ecosystem, we find APIs everywhere, be it cloud computing services,
productivity tools, or even on-premises integrations.

Consumers of the APIs simply reference the documented interfaces to
develop their applications and services to transact with the respective
systems, using the exposed APIs. For business owners, this simplifies the life
cycle management of the solution, as the underlying logic for an API can be
upgraded independently without breaking any upstream or downstream
systems so long as the documented contract and data definitions do not
change.

Hence, the key benefits of API-led architectures can be summarized as
follows:

Act as accelerators of cloud adoption within an enterprise.

Provide the foundations for establishing an omnichannel strategy.

Advance the decentralization of IT and business workflows.

The generation of revenue through API economy.

The focus of the various chapters in this book is to show you how to getthe
benefits stated here and see how the adoption of various tactical strategies by

your software development team may have a huge bearing on the success of
your initiatives.

Case study
We will make use of the following case study to correlate and contextualize
the concepts presented in subsequent chapters.

NOTE
This case study has been designed to simulate a real-world scenario. However, it is not meant
to be comprehensive and exhaustive, catering to all business requirements or scenarios. The
solutions and approach presented in the later stages are based on my point of view and
should not be misconstrued as prescriptive guidance. Architecture and design is an evolving
process and, hence, the reader is expected to build upon their existing understanding by
working through this case study.

About Packt Insurance Inc.

Packt Insurance Inc, a company with a presence in over 10 countries (across
America and Europe), offers a wide range of insurance products and services
to its customers.

Over the last few years, the year-on-year growth of Packt Insurance has not
been on a par with market opportunities. It is gradually receding to its
competition due to a lack of market adaptability, high cycle time on
innovation, and poor workforce productivity and collaboration owing to the
use of legacy LOB applications for running the business. Its cloud presence is
limited, and most of its applications are deployed as on-premises solutions.

In a recently concluded board meeting, a decision was taken to accelerate the
company's digital transformation journey through its cloud adoption program.
Packt Insurance wants to modernize even its LOB applications with a core
priority of cloud-first and mobile-first approaches.

A summary of the key business drivers and stakeholder viewpoints is
mentioned in the following section. For this case study, it is meant to
demonstrate how each stakeholder perceives the business problem and their
requirements for the target solution.

Key business drivers

Become a cloud-based digital business within the next 2-3 years.

Improve the speed to market, launching new services on a par with
market trends.

Expand operations in newer locations and geographies.

Stakeholder priorities

CEO:

Achieve > 10-15% growth by expanding on product offerings,
broadening distribution channels, and enhancing integration with channel
partners.

CTO:

I don't want to invest in IT infrastructure upfront, but rather spend
incrementally as we expand the business.

I want to know the profitability of our business units. I would appreciate
some insights into our business that will enable me to make decisions.

It would be great to know customer sentiments in terms of what they like
about us and what they don't like.

I would like to be known as a technology innovator/pioneer in the domain
and attract the new tech-savvy generation.

IT operations:

The adoption of modern practices for cloud-based solution development
and deployment across the enterprise.

Ensure compliance with security and data privacy standards.

The onboarding of new branch offices should be quick and seamless.

Product manager:

Reduce the cycle time of new insurance products from the current 6-8
months to a maximum of 2-3 months.

It would be preferable if actuarial rules can be updated without any IT
intervention.

Modernization roadmap

The executives at Packt Insurance have prioritized the roadmap for the
different IT initiatives to modernize their core LOB application in three
phases:

Figure 1.3 – A phased approach for digital transformation milestones

In the preceding diagram, the following applies:

Phase 1: In this phase, the prioritized list of capabilities targeted for a
Minimum Viable Product (MVP) will be developed. The objective of
this phase is to quickly operationalize the first version of the platform.

Phase 2: This is a continuation of Phase 1, and the next set of prioritized
capabilities can be taken up. Typically in this phase, the first release of
mobile apps and web portals will be targeted.

Phase 3: This is the continuous innovation phase wherein AI and
machine learning capabilities will be utilized to drive newer product
offerings and improve the overall digital services deployed.

A simplistic business workflow

A very high-level flow diagram of business processes from an end-user
perspective is provided here:

Figure 1.4 – A very high-level end-user flow

Packt Insurance Inc. is interested in the following business objectives:

Maximize the conversion rate of quotes to users purchasing a policy. This
is how the main revenue is generated. Hence, the premium amount quoted
to customers should be comparable with other market players. Customers
can evaluate the pros and cons, comparing the risk factors to decide
whether to purchase a policy.

Optimize the claim amount to improve the margin on policies. This is to
ensure that the benefits extended are appropriate, but still come at a low
cost to the company.

Summary
In this chapter, we have reviewed the importance of API-led architectures and
how they are critical to the success of the digital vision of an enterprise.
Every enterprise is different, having varying degrees of maturity in terms of
their usage of IT for the running of the business. Hence, the focus of this
chapter has been to establish some common principles that must be on the
radar of the IT leaders of the organization. Digital transformations cannot be
achieved through makeshift arrangements. It requires careful planning and
ruthless prioritization to reap greater benefits fromthe investments made.

As revenue generation is the most important priority for any organization,
this chapter highlighted the impact APIs can have within an enterprise, and
what role they play in enabling transformation and agility vis-à-vis achieving
business outcomes.

In the next chapter, we will understand how APIs act as digital connectors
and their impact on the digital economy.

Further reading
Eight reasons why architects love API-driven architectures:
https://hub.packtpub.com/architects-love-api-driven-architecture/

Microservices: An application revolution powered by the cloud:
https://azure.microsoft.com/en-us/blog/microservices-an-application-
revolution-powered-by-the-cloud/

Microservices by Martin Fowler:
https://www.martinfowler.com/articles/microservices.html

https://hub.packtpub.com/architects-love-api-driven-architecture/
https://azure.microsoft.com/en-us/blog/microservices-an-application-revolution-powered-by-the-cloud/
https://www.martinfowler.com/articles/microservices.html

What is API-Led – An Architectural Approach:
https://dzone.com/articles/what-is-api-led-an-architectural-approach-by-
luis

Enterprise Architecture – Building a Robust Business IT Landscape:
https://medium.com/quick-code/enterprise-architecture-building-a-robust-
business-it-landscape-e966edda102a

Build cloud-native applications in Azure: https://azure.microsoft.com/en-
in/overview/cloudnative/

Software as a Service (SaaS) concepts: https://www.w3schools.in/cloud-
services/software-as-a-service/

https://dzone.com/articles/what-is-api-led-an-architectural-approach-by-luis
https://medium.com/quick-code/enterprise-architecture-building-a-robust-business-it-landscape-e966edda102a
https://azure.microsoft.com/en-in/overview/cloudnative/
https://www.w3schools.in/cloud-services/software-as-a-service/

Chapter 2: APIs as Digital Connectors
APIs offer the ability to access information exposed by any system directly
using a simple request-response mechanism without the need for a user
interface (UI). As they allow you to connect to a system, in a way similar to
the plug and play model, they can be seen as digital connectors.

The Connector pattern is used in software engineering to enable network
connectivity between communication endpoints, such as the client and the
server. It is used in conjunction with the Acceptor pattern to enable network
devices to evolve independently of the mechanisms that passively establish
connections used by the services:

Figure 2.1 – A simplistic view of communication between machines using the Connector-
Acceptor pattern

APIs are the modern world manifestation of the foundational blocks for these
frontline connectivity touchpoints. Hence, it is important to treat APIs as
digital assets of enterprise innovation, to reap the benefits of the
transformation through a carefully designed API ecosystem.

The purpose of this chapter is to establish APIs as transformational digital
channels for a modern enterprise. It also covers how API-led connectivity is
reshaping the industry boundaries, and how newer methods of integration and
distribution channels are broadening the IT landscape for enterprises.

This chapter also reflects upon the benefits of a well-connected enterprise and
why traditional service-oriented approaches must be re-imagined to meet the
connectivity needs of the present world as well as to prepare for the future
through API-led architectures.

In this chapter, we are going to cover the following main topics:

The connected enterprise

The role of APIs in digital experiences

An API is a digital service

Packt Insurance Inc. – an API-led architecture strategy

By the end of this chapter, you will have a big picture view of the interactions
and integrations that typically happen within an enterprise context, and how
APIs can be viewed as the building blocks of your digital transformation
strategy.

DID YOU KNOW?
Gartner predicts that by 2025, 95% of the software application providers that consume cloud
services as part of their product offerings will also market, sell, and provision their offerings

through cloud platform marketplaces.

The connected enterprise
A connected enterprise is one where the business can truly connect with its
customers, partners, and employees in a coherent manner to deliver business
value at every step with greater productivity. A connected enterprise is
always best suited to adapt quickly to industry changes. It applies market
insights to pursue opportunities that drive innovation and growth. This,
however, requires scrutiny of the existing systems and processes in place and
then reimagining the business workflows to aim toward more sustainable
growth.

The following diagram depicts how customer outcomes are tightly coupled
with the efficiency and effectiveness with which other gears such as
employees and partners are operating within an enterprise:

Figure 2.2 – The connected enterprise – synchronicity across customers, partners, and
employees

In the next sections, we will look into the various ways in which API-led
architectures drive the business outcomes of an enterprise.

The role of APIs in digital experiences

APIs have been around for a while, but their importance and compelling
potential as crucial instruments of business execution were never understood
before. They facilitate the seamless exchange of information across various
systems. APIs also enable developers to build newer applications and digital
experiences.

APIs are crucial to building digital experiences due to the following:

They can be accessed from anywhere.

They can be easily found in a central repository.

They can comply with the latest security rules, such as GDPR.

They can abstract backend data services from their consumers.

They can be developed in any preferred programming language.

They can control the throughput to protected backend services against
DoS attacks.

Thus, it is a well-established fact that the return on investment (ROI) on
API-led strategies is just phenomenal. Almost all organizations have started
prioritizing their cloud initiatives toward accomplishing this goal.

Now you may wonder: "How do you calculate ROI?" In simple terms, the
ROI for any IT strategy can be calculated as revenue generated minus the
investment required. Let's look at the various cost and revenue buckets:

Investment: Development costs, infrastructure costs, maintenance costs,
revision/upgrade costs, and release costs

Revenue: Income through customers and new opportunities
(upselling/cross-selling)

API-led strategies that leverage the modern microservices architecture style
aid in the following:

A significant reduction in the revision and release costs

Adapting to market demands and user voice, leading to greater loyalty
and sustained growth of the customer base

Having an edge over the competition by allowing new business
opportunities, thereby boosting revenue growth

Considering these, it is only fair to state that the ROI for API-led strategies
will be high (profitable) compared to any other approach.

Organizations that plan to adopt a robust API-led connectivity strategy will
reap the benefits in the long term. These API platforms will add up to the
unique selling point (USP) of enterprises when they transact with their
partners and customers.

Major benefits of API-led connectivity

Organizations want to deliver the maximum experience to their customers
and partners at a minimum investment. Hence, they want to be both flexible
and adaptive in their solutions. This is where API-led connectivity plays a
crucial part. Let's understand the major benefits of API-led connectivity.

An enriched customer experience

The bargaining power of customers drives enterprises toward building
experiences that offer value for money. Simply put, customers prefer to buy
from companies that offer an experience of their choice. Every customer is

unique and has their own way of engaging with the businesses. By exposing
business data as APIs, enterprises can exploit the opportunity of allowing
developers, channel partners, and even customers to build engaging
experiences having a personalized touch. Insights derived through the usage
of Artificial Intelligence (AI) and Machine Learning (ML) can also be
leveraged to further enrich the capabilities of these digital experiences.

Fostering connectivity and collaboration

Given any large enterprise, there could be easily 100+ apps for various
purposes, some of which might even be legacy. APIs offer a way to integrate
these siloed applications, thereby allowing cross-functional data exchange.
This enhances the overall productivity and eventually improves the
profitability of the enterprise along with the flexibility for changes and
upgrades as and when required.

API-led connectivity strategies have led to the tremendous growth of
Business to Business (B2B) collaboration scenarios. For example, in a
supply chain kind of a scenario, the producer of finished goods can source the
inventory of raw materials at the right time by opening their Enterprise
Resource Planning (ERP) systems for API-based integrations with the
corresponding partner or vendor. Automated and transparent tracking of
orders and payments will eliminate any delays in the release of the inventory
that may occur due to disconnected manual reconciliation between separate
systems.

Further, it is only prudent to state that API-led connectivity offers the best
seamless integration across enterprises that may have their own tools and
technologies to run the business at their end. B2B enterprise application

integration (EAI) workflows can be easily developed using the industry-
standard data exchange formats, using supported protocols.

NOTE
EAI and B2B scenarios will be covered in more detail in Chapter 8, API-Centric Enterprise
Integrations.

Fueling growth through innovation

Decoupling user experiences from the backend business logic and data opens
a wide range of possibilities for an enterprise. Platform developers can focus
on building APIs that serve as layers of abstraction over the business data,
whereas frontend or client application developers can innovate on the end
user experiences, thereby allowing them to meet the dynamics of the market,
customer, and technology trends.

With APIs, companies can expedite their innovation journeys to improve the
speed to market and strengthen their competitive advantage in the industry.

APIs serve as digital enablers for an
enterprise

Considering the benefits of API-led connectivity as described in the previous
section, APIs can be considered as digital enablers for an enterprise.

They allow an enterprise to do the following:

Focus on the overall strategy and business goals

Increase the digital reach of the services offered

Achieve the business results

Offer data-driven insights for effective decision making

An API is a digital service
Businesses are finding different ways to use data and services for competitive
leverage. The most important interaction touchpoint for customers and
consumers alike is the published API layer. From plain vanilla API
platforms to Integration Platform as a Service (iPaaS), organizations are
expanding their digital footprint of these API-led architectures.

Most enterprises have already embarked on a journey to design and adopt an
API-led architecture strategy to survive against the competition. Start-ups are
already leveraging technology to its fullest potential to attract and wow their
customer base. Hence, traditional businesses cannot afford to stay far behind
in their journeys to avoid losing out on their market share.

API architecture within an enterprise

While the actual implementation of an API architecture may vary between
organizations, the segregation and grouping of APIs through a logical
architecture can be broadly depicted as mentioned here:

Figure 2.3 – API architecture – logical view of tiers/layers

Client apps/connectivity

This tier comprises all the applications (internal and external) that integrate
with the various APIs for the delivery of end user experiences and associated
business functionality. Typically, these would be mobile/web/desktop apps
and even backend services of other external applications that are hosted
elsewhere. These clients connect and exchange data as per the published data

and service contracts using the protocol and connectivity options supported
by the API platform.

API gateway or management

The API gateway serves as the single entry point and offers a standardized
process for all interactions between the clients and the API. It also serves as a
management layer for discovery, usage, and other important functions such
as authentication, authorization, throttling, message translation, and
transformation and monitoring.

Experience APIs

These are the set of APIs that are required to propel the user interface (UI)
of client apps. These APIs are designed to provide a layer of abstraction to
decouple presentation data models from the underlying storage data model.
These APIs are generally lightweight and should not contain any major
business logic apart from schema validations to ensure that proper data is
received from the clients for the execution of the underlying business
workflows through the process APIs.

These APIs are primarily used for multi-channel delivery.

Business or process APIs

These APIs contain the business logic and rules that may apply to the
processing of a request. These are separated out to ensure that the rules are
consistently followed irrespective of the entry point, and the data remains in a
consistent state after being processed.

These APIs are typically heavyweight, and highly dependent on the nature
and criticality of the business workflow. Hence, these APIs must be carefully
designed to ensure maintainability and extensibility. It is also advisable to

keep the rules flexible so that they can be changed easily without incurring
high maintenance costs.

Application and integration APIs

These APIs are usually invoked during Enterprise Application Integration
(EAI) scenarios. They contain logic to transform the data model consumed
from the source into a canonical model that will be supported by the systems
under integration. Thus, integration APIs can act as a mediator on behalf of
other applications or systems in the enterprise.

System or infrastructure APIs

These APIs serve as the connectivity blocks for the underlying data store.
These are also known as data services. These APIs ensure that direct access
to a data store is not possible from the systems, and only standard access
patterns that are permitted can be used. These APIs also serve as a repository
layer, to encapsulate the underlying storage implementation from the higher
tiers so that it is easier to change or upgrade the storage tier without
impacting any already working applications. Generally, this layer requires the
most careful consideration as it works with the store directly, and proper
security controls must be in place to avoid any data breach or even malicious
access.

Database, the persistent store

This serves as the persistence tier of the solution. These are typically various
storage solutions (blobs, RDMS, NoSQL, or even SaaS products). You can
find a large footprint of various storage technologies within an enterprise.

API classification by management and
access pattern

APIs within an enterprise can be broadly classified as follows:

Figure 2.4 – Types of APIs within an enterprise

Let's take a detailed look at each type of API to understand its intended
purpose and use.

Internal APIs

This is the most common use case within an enterprise. Internal or private
APIs are used for information exchange within the various silos within an
enterprise, or even to power client-side mobile or web apps. The decoupling
of the business layer (APIs) from the presentation logic (UI apps) provides
the ability to build great end user experiences. These APIs must be highly
secure, follow an authorization framework, and must adhere to the corporate
security policies to prevent any data breaches.

Typical examples of internal APIs are the following:

APIs for ERP systems such as SAP and TIBCO that will be consumed by
other business applications, such as point-of-sale and the online store

APIs for shared services such as email or SMS so that all applications can
make use of a common gateway for the delivery of messages

Exposing on-premises hosted backend HTTP services to be consumed by
line-of-business cloud applications

Public APIs

Public APIs support consumer access for business purposes. Typically, they
are available for use by authorized developers or enterprises for integration in
their custom application scenarios. Public APIs may require an active
subscription (or keys) for access as they might be chargeable on a pay-per-
use model. Some public APIs might also be free and open to use by anyone.

Public APIs may be secured and require authentication and authorization as
well. Hence, security threats (if any) apply equally to these types of APIs as
well.

Public APIs can be free or charged. A few practical examples are as follows:

Exposing datasets that can be consumed by the general public, for
example, COVID-related data by various government agencies

API services that are offered to consumers, for example, geo-location or
mapping services from Microsoft or Google, or email or SMS sending
services by Twilio

(External) partner APIs

Partner APIs are used to support integration with authorized external channel
partners only. The most common requirement is the integration with any
backend ERP system of an enterprise that is not exposed to the outside world.
Additionally, the nature of line-of-business applications may vary across
various enterprises, and hence a common and standardized data exchange
mechanism must be developed for the seamless integration of the data islands
that may exist.

The partner APIs are designed for specific purposes only and may support a
variety of protocols and data formats that are required for the bi-directional
integrations to work.

Partner APIs are primarily developed to support Enterprise Application
Integration scenarios. Hence, typical examples include APIs that can support
various integration flows. This is covered in more detail in Chapter 8, API-
Centric Enterprise Integrations.

Composite APIs

These APIs serve as aggregators by combining the output from multiple
internal APIs into a single response. They are mostly used in a Façade layer
kind of a pattern or even backend for frontend (BFF) patterns.

Composite APIs are beneficial in scenarios wherein the performance of the
user interaction for client-side apps must be improved by avoiding a chatty
interface. Each network call will incur some latency, thereby impacting the
overall performance of the user scenario and steps required to accomplish a
task.

Composite APIs are used when building frontend applications that have a
different view model for the UI depending on the type of client.

For example, for a business entity that has 10 fields in the backend, a mobile
app may show only 4 fields, whereas a web app can show all 10 fields due to
the available screen size and form factor. Hence, a facade or wrapper API
will be developed that controls the amount of data sent to the client based on
its type.

Packt Insurance Inc. – an API-led
architecture strategy
The development team at Packt Insurance already knew the fact that building
a robust Azure cloud-based API platform would make them future-ready.
They can drive future innovation and customer engagement by building best-
in-class experience apps. They can apply AI and ML to improve their product
offerings. They can leverage the scale of the cloud to expand their business.

The approach and the concepts presented in the following sections will help
you understand how to identify the boundaries of a complex enterprise
solution and how to model the high-level business workflows, keeping in
context the touchpoints of the various persona types. This aids in visualizing
a big picture view of the various API requirements and their respective
categorization. Modern API-led architectures are primarily microservices-
driven. Hence, this case study also suggests the approach to defining API
blocks for the microservices. Structurally, a microservice can contain one or
many discrete API blocks.

Domain decomposition

The development team decided to build a microservices-based architecture
for their API platform strategy. The team applied domain-driven design
(DDD) techniques to identify the high-level business subdomains of the
insurance domain.

DDD
DDD is a concept introduced by a programmer named Eric Evans in 2004, in his book
Domain-Driven Design: Tackling Complexity in the Heart of Software. It is an approach for
architecting software design by looking at software in a top-down approach.

You are advised to read about the concepts of DDD to improve your understanding of the
subject and the terms that are used.

An insurance domain comprises various sub domains, such as insurance
products, rates and rules, quotes, policies, claims, customers, business
application users (identity), invoices and payments, and marketing
promotions.

The following diagram depicts the boundaries of the various sub-domains
and their relationship using the dotted lines:

NOTE
This is just an initial list for illustration purposes only. However, the actual list of subdomains
could be longer and will vary based on the nature of the company.

Figure 2.5 – DDD bounded contexts for the system

Service and persona map

A high-level view of the service and persona map is depicted here:

Figure 2.6 – Service and persona map

The preceding diagram depicts the high-level boundaries of the various
services (or sub-systems) that have to be developed, and how the data and
interactions will happen as part of the business workflow.

NOTE
In the preceding depiction, only the key persona types have been considered that will have a
bearing on the design of the API platform. End users/customers have not been considered as
they will make use of the mobile/web apps to interact with the system.

Persona descriptions are provided here:

Why is this important?

The study of the various persona types is extremely important to research
their existing pain points purely from an enterprise context. Any systems
designed must address these pain points for eventual adoption and usage. As
we learned in the The connected enterprise section, employees and partners
are important stakeholders to achieve business outcomes.

So, you must capture the comprehensive list of users who may have a direct
impact on the requirements of the solution being envisaged.

API composability using microservices

As you start detailing out the sub-systems for the various bounded contexts,
along with identification of the various business operations, the list of
microservices starts emerging along with identification of the APIs that must
be created. Some of these APIs will be public or external, while others will be
internal or composite in nature.

The composition of the various microservice boundaries using API blocks is
depicted here:

Figure 2.7 – API composability using microservices for the insurance domain

As a follow-up exercise, you may want to try listing out the various APIs and
their corresponding operations. Apply the principles of domain-driven design
to find business entities, relations, state transitions, and events.

Event storming is a useful technique to identify the domain boundaries and
create a high-level context map for the various microservices.

NOTE
The DDD-based approach was selected due to its wide usage in the industry as a popular
standard. Every business system can be easily expressed using a domain model and the
business functions can be interpreted as behaviors of the domain model. This simplifies the
design of the code-level components by providing an object-oriented way of defining the
interfaces, classes, and data objects. Additionally, developers can follow the principles of

Behavior-Driven Design (BDD) during the implementation phases to ensure the overall
correctness of the functionality.

However, it does require a good understanding of the concepts before teams are ready to
apply the DDD pattern. Hence, development teams can also take a look at other industry
practices to expedite the API design work.

Summary
In this chapter, we have reviewed how APIs are increasingly being used as a
valuable and powerful asset to offer versatile connectivity experiences for
digital enterprises. The adoption of open specification standards has reduced
the complexities of building integrations.

Developers can build APIs in the language of their choice but still achieve
seamless connectivity and usage by the API consumers. Cloud-based
providers are investing heavily to support EAI integrations, which comprise
more than 80% of all enterprise integration scenarios. As legacy platforms are
fading out, enterprises are investing heavily in building next-generation
highly secure integration platforms on the cloud.

You can make use of the concepts presented in this chapter and analyze your
organization context to identify the different APIs that may exist. Also, check
whether you are able to identify the opportunities for your business to build
additional API platforms for greater engagement.

Great API design is an architectural concern as it combines the business
drivers with product capabilities and a software solution approach. Hence, it
is critical that you plan to implement a robust API-led architecture for the
success of the digital platform.

In the next chapter, we will look at some of the important architecture
principles and styles that must be adopted while building highly scalable and
reliable API-centric solutions.

Further reading
Top Priorities for Tech & Service Providers: Leadership Vision for 2021
(gartner.com): https://www.gartner.com/en/publications/top-priorities-for-
tech-service-providers-leadership-vision-2021

Guide to building an enterprise API strategy (techtarget.com):
https://searchapparchitecture.techtarget.com/Guide-to-building-an-
enterprise-API-strategy

Designing a "DDD-Oriented" Microservice:
https://docs.microsoft.com/en-
us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-
oriented-microservice

What is Behavior-Driven Design?:
https://www.agilealliance.org/glossary/bdd

https://www.gartner.com/en/publications/top-priorities-for-tech-service-providers-leadership-vision-2021
https://searchapparchitecture.techtarget.com/Guide-to-building-an-enterprise-API-strategy
https://docs.microsoft.com/en-us/dotnet/architecture/microservices/microservice-ddd-cqrs-patterns/ddd-oriented-microservice
https://www.agilealliance.org/glossary/bdd

Section 2: Build Reliable API-Centric
Solutions
The second part of this book covers the design considerations that are
important for building robust and scalable API-centric solutions for the cloud,
with a focus on the important tactical practices that are required to meet the
expected business outcomes, as measured through tracked metrics.

This section includes the following chapters:

Chapter 3, Architecture Principles and API Styles

Chapter 4, Assuring the Quality of the API Service (or Product)

Chapter 5, RESTFul API – the New Web Standard

Chapter 6, API Design Practices

Chapter 7, Accelerating through DevOps Essentials

Chapter 3: Architecture Principles and API
Styles
Architecture principles are a set of general rules and guidelines that are meant
to serve as the core tenets for the design, development, and maintenance of IT
solutions within an enterprise. These principles are meant to govern the
decision-making process throughout the life cycle stages of an application to
accomplish the goals outlined by the organization.

The purpose of this chapter is to review the key architecture principles that
will apply to API-centric solutions, and how they translate into the product
backlog.

The chapter also presents some of the industry-standard API architecture
styles along with references to Azure cloud-based implementation
techniques.

In this chapter, we are going to cover the following main topics:

Architecture principles

Evolve architecture blueprints iteratively

Constructs of an API

Popular API architecture styles

Finding the right style for your API use cases

Serverless APIs – accelerators for innovation

Implementing API-led architectures in Azure

Case study elaboration – Packt Insurance Inc.

By the end of this chapter, you will be familiar with the intricacies of the
various architectural styles and decide on what best suits your API platform
needs. You will also be adept in making fit-for-purpose decisions by
choosing the right Azure services to build highly scalable and resilient APIs
on Azure.

TIP
Architecture backlog must be prioritized alongside functional backlog to deliver a highly
reliable and scalable API service.

Architecture principles
The foundation to building a highly reliable API-centric architecture is to
focus on the core objectives and goals that must be addressed by the solution
for the given context. This is typically outlined using a list of architecture
principles that serve as the guiding principle for solution architects and
engineers while they analyze the requirements of the business and prepare the
implementation roadmap for the solution.

Some of the standard software architecture principles are must-have for API
architectures as well. . A few others are based on modern practices that are
more relevant for cloud-based solutions.

The most important architecture principles that commonly apply to API
platforms are categorized as follows:

Keep it simple: Minimize moving parts to reduce complexity and
accelerate the time to market. In the world of Agile and iterative

development, changes are expected as a natural process. Trying to get the
architecture right and comprehensive from the very outset is sometimes
almost impossible. Hence, allow the API platform architecture to just
evolve organically as and when clarity is received through backlog
elaboration.

Fit for purpose: Adequately address key requirements (must-haves) of
various stakeholders so that it can be implemented within a reasonable
time frame. Leverage the Architecture Trade-off Analysis Method
(ATAM) to derive the right balance among the competing priorities. For
more details on ATAM, refer to the following link:
https://www.geeksforgeeks.org/architecture-tradeoff-analysis-method-
atam/.

Right tool/solution for the task: Architecture should, as per the problem
statement, infer best practices and reference architectures. A fit-gap study
must be conducted to understand the benefits of one approach over the
other, and the results captured as the basis of your architecture decision.
In a rapidly evolving technology landscape, newer technologies/products
may reduce your customization needs.

Divide and conquer (separating responsibilities): These are loosely
coupled, independently deployable components that are highly
maintainable and testable. This is key while building microservices. Each
API must serve a specific purpose and their life cycles can be managed
independently of other APIs in the platform.

Prepare for failure: Systems should be fault-tolerant and recover from
failures quickly. Transient faults are expected from any cloud-based

https://www.geeksforgeeks.org/architecture-tradeoff-analysis-method-atam/

solution. Hence, the system must plan for it and offer greater reliability.

Secure by design: Security is the most important aspect of any
architecture. Implement the principles of defense in depth to ensure that
the solution is protected at all layers.

Cost optimal but delivers business value: Business outcomes must be
realized with reasonable investments. Businesses operate on profit, and so
even if they like it, they won't have the budget to procure expensive
resources. The solution envisaged must be financially viable for the
business.

Measure what's important: Derive actionable insights from the
logs/metrics captured. Feedback loops are important for continuous
improvement. There must be adequate instrumentation and logging
strategies in a plan so that administrators/business owners can receive
tangible insights to take decisions.

Design for high availability/design for self-healing: Anticipate, plan,
and gracefully recover from failures without significantly impacting user
experiences. Solutions must bake in automation to detect failures and
prefer automated failover over healthy instances to minimize downtime.

Think serverless, PaaS over IaaS: Focus on the solution, and let the
cloud manage your infrastructure required to run it. Wherever possible,
plan to build lightweight and flexible, yet highly scalable, services that
can be deployed or upgraded easily. Later in this chapter, you will get an
expanded view of the concept of using serverless technologies for
building APIs.

NOTE

The list of architecture principles captured earlier in this chapter is typically the most
important focus area for the majority of cloud-based solutions. However, it is not meant to
be an exhaustive list, and additional principles may apply to your context.

Evolve architecture blueprints iteratively
Architecture blueprints are typically a set of diagrams and supporting
documentation that provides a high-level view of the solution being
envisaged from a conceptual, logical, and physical or deployment point of
view. It captures the relationship between the various components along with
the interaction and integration patterns, bearing in mind the various
functional and architecture requirements of the solution.

Traditionally, IT architects have followed a big bang kind of approach,
attempting to finalize most parts of the architecture before starting any
development work. The primary goal was to identify most of the risks
upfront, and then mitigate them before any significant investment of time was
done. However, in recent times, the approach for the architecture definition
process has shifted from this conventional big bang style to a more
experiment, learn, and improve model:

Figure 3.1 – Agile Architecture evolution process

The steps depicted in the preceding diagram are briefly described here:

Table 3.1 – Steps involved in the Agile Architecture evolution process

As is evident from the preceding section, solution architects and developers
must adopt a more continuous architecture mindset where change is the only
constant. While building API-first architectures, the same concepts apply.
The team must focus on releasing a Most Viable Product (MVP) as soon as
possible and then devise a prioritization strategy to release features and
capabilities incrementally over time.

You can read more about Agile Architecture concepts here:
https://www.scaledagileframework.com/agile-architecture.

Additionally, refer to this link for continuous architecture principles:
https://resources.sei.cmu.edu/asset_files/Presentation/2016_017_001_454847
.pdf.

Constructs of an API
Before we start discussing the various architecture styles, let's get familiar
with the different constructs that make up an API. Throughout this chapter,
we will be using these terms and hence it is important to have a common
understanding of them. The various parts that constitute an API are depicted
here:

https://www.scaledagileframework.com/agile-architecture
https://resources.sei.cmu.edu/asset_files/Presentation/2016_017_001_454847.pdf

Figure 3.2 – Constructs of an API

The constructs of an API are explained in the following sections.

API operations or service contract

The interface definition of an API outlines the list of operations supported
by the API. Each operation must be unique and should perform a single
function or task; in other words, it follows the single-responsibility
principle.

Data contract or entity schema

The data contract defines the schema of the entities that participate in the
various operations supported by the API. The entities can be simple or
complex data types depending on the type of operation being performed.

API endpoint

API endpoint refers to the published networking endpoint for the API.
Depending on the hosting of the API service, the endpoint may be accessible
over the internet, intranet, or even be private to a particular machine.

Communication protocol (application layer)

The communication protocol assists two software systems in conversing
with one other. For this book, we will be focusing primarily on the
communication protocols used in cloud computing, which are Hypertext
Transfer Protocol (HTTP), Message Queuing Telemetry Transport
(MQTT), and Advanced Message Queuing Protocol (AMQP).

HTTP is very popular for web-based synchronous communication scenarios,
whereas AMQP is used for message-oriented asynchronous interactions.
MQTT is frequently used for machine-to-cloud communications.

Input and output – the request-response
pair

While invoking an API, depending on the definition of the operation, the API
consumers must send input data that will be processed at the server.
Subsequently, a response as an output of the operation will be sent back to
the caller.

For an HTTP-based interaction, the input can be specified using either HTTP
headers, query string parameters, or even the request body. Here is an
example of a simple HTTP GET request with a policy ID in the query string.

The service will return the corresponding policy document in JSON format as
a response to this request:

GET /policy/getPolicy?id=POLICY1122334455 HTTP/1.1

Host: api.contoso.inc

The resulting JSON response for this API may look something like this:

{

"policyid": "POLICY1122334455",

 "startdate":"2020-03-03T00:00:00",

 "expirydate":" 2021-03-03T00:00:00",

 "customerid":"123456789",

 "details": {

 "product":"healthPlus",

 "term":"2",

 …

 …

 }

}

THE HTTP STANDARD
For a detailed understanding of the request-response pairs supported by the HTTP
communication protocol, refer to the relevant W3C standards at
https://www.w3.org/Protocols/.

Popular API architecture styles
API developers tend to use one or more API architecture styles based on the
business functionality and simplicity in implementation:

https://www.w3.org/Protocols/

Figure 3.3 – Frequently used API styles

The commonly used styles are explained in the next sections.

The tunneling or RPC style

The tunneling, or Remote Procedure Call (RPCs), style is the oldest
architecture style and has been widely used for building API interfaces. The
RPC style follows the client-server model, wherein the server exposes a set of
endpoints that serve as remote functions:

Figure 3.4 – RPC style

The clients interact with these endpoints using a well-defined message format
organized using XML. Both the request body and response output of these
APIs are in XML. This style is supported by a wide range of transport and
communication standards, such as HTTP, TCP/IP, and JMS. The APIs may
use encryption and decryption techniques to support message-level security
as well. JavaScript Object Notation (JSON) data schemas can also be used
for the request body and response output for RPC-style APIs.

The Simple Object Access Protocol (SOAP) API format is the most popular
implementation of this style. The message format in SOAP adheres to the
Web Service Descriptive Language (WSDL) standards, and so is slightly
different from the generic RPC style. RPC-style APIs still prevail and are
widely used in various business contexts.

A summary of the benefits and limitations is provided here:

RI (or REST) style

The URI API style is also popularly known as the REST API style. It relies
on the concept of invoking requests using HTTP operations to support
different functions such as Create, Read, Update, and Delete on the business
objects. It allows the requesting clients to invoke and manipulate web

resources using standard HTTP protocol functions, thereby following a
uniform convention that is easy to understand:

Figure 3.5 – REST API architecture

The APIs developed using this style are typically lightweight, easy to extend,
and hence are mostly used for building public APIs, even backend APIs for
mobile and web apps, to expose services and data over HTTP.

TIP
API applications that are protected by a web application firewall may require careful analysis
of the API syntax for Open Web Application Security Project (OWASP) rules. Some of the
query string parameters (especially for ODATA APIs) may be blocked as a result of
suspecting SQL injection or scripting attacks. Hence, the RPC + JSON style might serve
better for those scenarios.

A summary of the benefits and limitations is provided here:

Query or GraphQL style

The GraphQL API style is an extension of the REST API style and was
developed as an alternative to improve the overall performance and efficiency
of querying and retrieving results from a data source. The specification

defines a format that is hierarchical and serves as documentation of your data
needs.

This API style is used only for read purposes and is preferred when the
queries on the data are a little complex and may require multiple calls using
the standard REST operations. The two main building blocks for GraphQL
are schema and query:

Schema: A typed schema is used as API input. This schema captures the
selection of fields of an object that you want to query.

Query: This defines how to query the underlying data objects to fetch the
right datasets with the highest accuracy for the information desired.

A summary of the benefits and limitations is provided here:

Event-driven or asynchronous messaging
style

Event-driven architectures have become quite popular in recent years as they
can address classical concerns regarding reliability while building highly
scalable APIs. This architecture style operates through the asynchronous

messaging technique, whereby clients send messages to the server in a fire-
and-forget pattern instead of request/reply. As the processing of the message
happens outside of the main execution request flow, it is widely used for
building responsive applications. There are multiple ways in which the final
status of the message can be relayed to the client.

This is a powerful design style and supports a wide variety of transport and
message-level protocols. Using this style, large data transfers are also
possible. The messages posted to these APIs are first stored in intermediate
messaging queues also known as transient stores. The subscribers to these
queues typically contain the business logic that must be applied to process the
received message and then transform and finally save it in the final target
data repository (persistent store). Using the Publish-Subscribe pattern (for
example, Message Broker), additional data processing pipelines can be
implemented to operate on the received message simultaneously.

This style is commonly used in Internet of Things (IoT) scenarios, wherevic
devices (de event producers) send a lot of telemetry messages to the cloud
(event consumer).

However, one drawback of this style is that it adds some overall complexity
while building highly intuitive interactions using mobile or web apps.
Furthermore, it also requires additional hardware due to the additional layer
of transient stores and message brokers. Hence, careful planning must be
undertaken to remodel any legacy business flows before using this pattern.

A summary of the benefits and limitations is provided here:

Hypermedia style

The hypermedia API architectural style is an extension to the REST
architectural style, with the added capability of using hypermedia as its
foundation of design. This style is largely used while building adaptive
mobile or web apps.

Traditional RPC style, or even REST APIs, introduces a bit of tight coupling
as the frontend apps must know which operations to invoke for the various
screens. Hypermedia APIs, on the other hand, offer the benefit of producing

their own URI paths for various operations supported on the data entity.
Hence, developers building apps rely on the data to decide on the actions to
be supported, thereby making the experience more adaptive. These dynamic
URI linking concepts make these APIs interesting, as the consumer
applications will not be impacted by any changes in the underlying workflow
steps.

A summary of the benefits and limitations is provided here:

Other API styles

There are a few other API styles that fit specific contexts. However, their
usage is very limited and not very common in an enterprise context:

JavaScript APIs: These are popular with browser web extensions and
typically used for running background jobs or other intended actions.

Language Bindings or SDKs: Software Development Kits (SDKs) are
used for building applications targeted at a specific runtime or software
package. The SDKs can contain APIs that serve as wrappers over any
existing available services.

RSS and ATOM: Really Simple Syndication (RSS) has been there for a
while for the distribution of news feeds. ATOM is an enriched version of
RSS feeds and is also used for the publishing of periodic information to
its subscribers.

Streaming APIs: These are used for sending information in chunks to the
client instead of a single request-response pair. They are widely used for
the live streaming of media files:

Figure 3.6 – Streaming API behavior

Finding the right style for your API use
cases
When it comes to building API platforms, there is no one-size-fits-all. While
certain styles are more modern and widely used, but each style has its
limitations as well. Hence, the API development teams must evaluate the key

scenarios carefully and apply some sort of weighted matrix to understand the
pros and cons in order to determine the best style for the specific use case.

There is a usual tendency among developers to make use of experience and
programming language familiarity while approaching API requirements for
any newer projects. However, this approach is fraught with challenges when
it comes to the extensibility of API platforms. So, you must always do a
thorough analysis to select the right style for your needs.

You may want to consider the following guidance while selecting the API
style for your use cases:

The preceding list of use cases is not comprehensive and is provided as
guidance only.

Serverless APIs – accelerators for
innovation
Serverless computing is an execution model where the cloud provider (AWS,
Azure, or Google Cloud) will dynamically allocate resources to run a block
of deployed code. As the cloud provider manages the infrastructure, it will
only charge for the resources utilized to run the code. Hence, customers will
primarily be charged based on their usage.

You can read more about the Azure serverless offerings and their
corresponding pricing models here: https://azure.microsoft.com/en-
us/solutions/serverless/.

Serverless computing abstracts out the underlying infrastructure required to
host and run any application. This enables developers to focus on building the
applications without worrying about managing the server infrastructure. With
serverless computing, the cloud service provider will manage the deployment
and availability of the resources along with scaling based on demand.

Azure Functions, Logic App, Azure Kubernetes Services, and API
Management are examples of serverless computing technologies of the Azure
cloud that are covered in more detail in subsequent sections.

Benefits of using serverless computing for
APIs

https://azure.microsoft.com/en-us/solutions/serverless/

The prime benefits of using serverless computing are as follows:

Cloud-native and fully managed services: With serverless computing,
developers can shift their focus to building the business logic rather than
spending cycles on managing the underlying infrastructure. Also, the
deployment model is straightforward as you can easily deploy your code
and run it.

Faster time to market: Serverless computing reduces the operation's
overhead and cycle time to deploy services in the cloud. Hence, the
development teams can quickly build, deploy, and run the services. It also
offers great agility to upgrade any existing solution.

On-demand scalability and high performance: With serverless
computing, the infrastructure can be scaled up or down based on demand.
These automatic scaling capabilities also come with higher performance
and availability of the platform. As the cloud provider manages resources,
service scalability is managed automatically as per the configurations
applied to it.

Cost optimization through the efficient use of resources: This is
perhaps the most important benefit of serverless computing.
Organizations want to maximize the total cost of ownership (TCO)
through the most optimal use of cloud resources. Serverless resources
deployed with a consumption-based plan/tier are successful in ensuring
the most efficient use of resources, thereby impacting the overall cost of
running the solutions.

Hence, considering the key benefits, API developers can quickly create and
deploy lightweight applications using serverless technologies to test out any

new functionalities or experiment with features. The approach keeps costs
minimal while circumventing the need for complex deployment procedures.

Serverless architecture use cases

Typical use cases of serverless architecture are as follows:

Developers want to experiment with functionality and code without
worrying about managing infrastructure to run them.

Event/stream processing jobs, IoT data processing jobs, real-time
processing jobs, and so on.

Building scalable backend API apps (autoscale based on seasonality)
without requiring the upfront provisioning of resources

Workflows with no-code message processing steps requiring on-demand
execution and scaling

The list of use cases provided here covers the most frequently used examples.
If your API requirements fall in one of these categories, then you must
contemplate using serverless technologies.

Although it is not mandatory to always use serverless technologies, cloud
providers are continuously making investments in this area to bring in new
features and capabilities. Hence, it will be worthwhile for the development
teams to start accessing the use cases and get orientated with the approach. In
the following sections, we will explore how API-led architectures can be
implemented in Azure using the Azure services available.

Implementing API-led architectures in
Azure
The reference architecture provided is based on the services that are in
General Availability (GA) at the time of writing this book. Please continue
to check the Azure architecture center for any latest updates or new services
released by Microsoft.

Reference architecture for an enterprise
API platform

Enterprise API platforms are typically very robust in nature, spanning from
just a few services to hundreds of microservices, each solving a specific
business problem. Moreover, there will be different types of APIs (internal,
external, and public), making the hosting demands quite complex while
addressing security and other usage-related requirements.

There is a wide variety of choices available to teams when building solutions
for the Azure cloud. A very high-level sample representative reference
architecture for building an API-centric solution is depicted in Figure 3.7:

Figure 3.7 – Building blocks of an API-centric solution

As you would observe from the graphic, many Azure services are involved in
building a proper end-to-end solution. Each service is a building block of the
architecture. Depending on the nature of the API service or flows being
implemented, multiple services can be stitched together to create the solution.

NOTE
The preceding reference architecture is meant to provide a big-picture view of the capabilities
in the Azure cloud. It is not meant to be a comprehensive or exhaustive list of services that
can be used in your scenario. Please visit the Azure Architecture Center for a more detailed
understanding of workload-based reference architectures.

Read more on reference architectures here: https://docs.microsoft.com/en-
us/azure/architecture/. The important Azure services that are frequently used
are briefly described in the following sections.

Azure services for hosting API solutions

API solutions typically make use of compute plane technologies to host and
execute the associated transaction logic. Azure offers a variety of services for
this purpose. The salient high-level features of the different Azure services
that are frequently used in API-led architectures are mentioned in the
following sections.

NOTE
In this section, only a high-level description is provided to introduce the Azure service. For
more detailed information on each service, please refer to the detailed link provided for the
corresponding service.

App Service

A fully managed compute platform for hosting API and web applications:

Rapidly build, deploy, and manage powerful web and mobile multi-
channel apps for employees or customers using a single backend.

Quickly and easily scale globally on infrastructure you can trust.

Enterprise-grade security and management, including AD authentication.

Use your existing skills to code in your favorite language, framework,
and IDE to build APIs and apps faster than ever before.

Use modern DevOps practices, continuous deployment, cloud debugging
tools, and testing in production to streamline your development process.

https://docs.microsoft.com/en-us/azure/architecture/

Integrate with API Management, Logic Apps, and many other Azure
services.

Find out more on Azure App Service at the following link:
https://azure.microsoft.com/en-in/services/app-service/.

Function App

A serverless compute platform for processing events with elastic scale:

Expedite your development cycles by building granular code blocks or
functions quickly.

The service can scale on demand and charges will be based on
consumption. A fixed pricing plan is also available for very high usage
scenarios.

Find out more on Azure Functions at the following link:
https://azure.microsoft.com/en-in/services/functions/.

Logic App

A cloud-based integration service that is used for the execution of no-code
workflows:

Offers a designer view to model your business processes and workflows
visually.

Build a no-code HTTP REST API for use in web, mobile, and API apps.

Automate EAI, B2B, and business processes using integration accounts.

Connect to on-premises data through connectors and data gateways.

Offer a variety of invocation options such as HTTP triggers, event-based
triggers, or even a scheduled trigger.

https://azure.microsoft.com/en-in/services/app-service/
https://azure.microsoft.com/en-in/services/functions/

Find out more on the Logic App service at the following link:
https://azure.microsoft.com/en-in/services/logic-apps/.

Azure Kubernetes Service (AKS)

Microsoft's version of the open source Kubernetes cluster implementation. It
makes it easy to build and operate the Kubernetes cluster by offloading
complex Kubernetes creation and management tasks to Microsoft Azure,
such as the controller and scheduler.

A Kubernetes cluster consists of the following:

A node pool comprising nodes that can be scaled up based on demand.

Pods that run application workloads using containers within the nodes.

Cluster master nodes provide the core Kubernetes services and
orchestration of application workloads.

Kubernetes has evolved to become the leader among container orchestration
engines and is widely used in the industry to build high-scale reliable
services.

Find out more on Azure Kubernetes Service at the following link:
https://azure.microsoft.com/en-in/services/kubernetes-service/.

Service Fabric

Azure Service Fabric is Microsoft's distributed systems platform for running
highly scalable and reliable microservices. It provides an SDK that makes it
easy to package, deploy, and manage microservices and containers. It is used

https://azure.microsoft.com/en-in/services/logic-apps/
https://azure.microsoft.com/en-in/services/kubernetes-service/

to run many of the services in Azure and components in Windows Server
2016 and higher versions.

All services deployed within the Service Fabric cluster must be developed
using the Service Fabric programming model. The key differentiator of
Service Fabric is its strong focus on running stateful services.

Find out more on Azure Service Fabric at the following link:
https://azure.microsoft.com/en-us/services/service-fabric/.

Azure Sprint Cloud

Azure Spring Cloud is a fully managed service in Azure that is suitable for
running your Sprint Boot microservices without any code changes to the
applications. Azure Spring Cloud was originally designed to support Java
Spring Boot applications and has been enhanced to include support for
ASP.NET Core Steeltoe applications as well.

Azure Sprint cloud provides comprehensive tooling support for your API life
cycle management.

Discover more on Azure Spring Cloud at the following link:
https://azure.microsoft.com/en-us/services/spring-cloud/.

Additional services for building end-to-end
solutions

The following list of additional services is typically required for building
end-to-end solutions.

Azure Active Directory/Azure AD B2C

https://azure.microsoft.com/en-us/services/service-fabric/
https://azure.microsoft.com/en-us/services/spring-cloud/

A cloud-based identity management solution from Microsoft, able to manage
both external and internal user identities. Azure AD B2C (short for Business
to Customer) is an extension of the Azure AD and preferably used when the
application is required to manage external customer or partner identities for
access and authorization.

Read more on Azure AD and AAD B2C at the following link:
https://azure.microsoft.com/en-us/services/active-directory/external-
identities/b2c/.

API Management

Azure API Management provides a governance layer on top of all published
APIs. This service is covered in more detail in Chapter 10, APIs as a
Monetized Product.

Read more about Azure API Management at the following link:
https://docs.microsoft.com/en-us/azure/api-management/api-management-
key-concepts.

Application Gateway

This serves as a Web Application Firewall (WAF) component to check
various types of security rules while processing a request.

Key features of Application Gateway include the following:

WAF

Connection draining

URL-based routing

Redirection

https://azure.microsoft.com/en-us/services/active-directory/external-identities/b2c/
https://docs.microsoft.com/en-us/azure/api-management/api-management-key-concepts

Cookie-based session affinity

SSL termination

Custom error pages

Multi-site homing

Re-writing HTTP headers

WebSocket and HTTP/2 traffic

Read more about Azure Application Gateway at the following link:
https://docs.microsoft.com/en-us/azure/application-gateway/overview.

Azure Front Door

This is Microsoft's latest offering for providing a layer of security on top of
your web or API applications. It uses the backbone network of Azure to offer
low-latency access to other PaaS resources. It is like Application Gateway
from a WAF perspective, but it operates at Layer 7 (HTTP/HTTPS).

Read more on Azure Front Door at the following link:
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-overview.

Service Bus

A highly scalable and reliable messaging service from Microsoft. It supports
three different types of communication options:

Queues

Topics (and subscriptions)

Relay

It is widely used in various brokered messaging scenarios.

https://docs.microsoft.com/en-us/azure/application-gateway/overview
https://docs.microsoft.com/en-us/azure/frontdoor/front-door-overview

Read more at the following link: https://azure.microsoft.com/en-
in/services/service-bus/.

Event Hub

A highly scalable event ingestion service capable of processing millions of
events per second. This is typically used as a big data streaming service. It
supports a partitioning strategy by consumers and allows for further scaling
and separation of the streaming data.

Read more about Azure Event Hub at the following link:
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about.

IoT Hub

IoT Hub was designed to be a bidirectional messaging service, allowing for
the streaming of telemetry events generated by the devices at a great scale,
while also allowing for cloud-to-device communications. For most of the
event messaging scenarios, Event Hub should suffice. However, if your
situation has cloud to device (C2D) and device to cloud (D2C) scenarios,
then an IoT hub is the preferred choice of service.

Read more about Azure IoT Hub at the following link:
https://docs.microsoft.com/en-us/azure/iot-hub/about-iot-hub.

Event Grid

Event Grid is a fully managed service that allows for seamless integration
across various applications and Azure services using the event messaging
pattern. This service is widely used for building event-driven serverless
applications in Azure.

Read more about Event Grid at the following link:
https://docs.microsoft.com/en-us/azure/event-grid/overview.

https://azure.microsoft.com/en-in/services/service-bus/
https://docs.microsoft.com/en-us/azure/event-hubs/event-hubs-about
https://docs.microsoft.com/en-us/azure/iot-hub/about-iot-hub
https://docs.microsoft.com/en-us/azure/event-grid/overview

Application Insights

An Azure Monitor feature that monitors live applications in Azure and
diagnoses issues or exceptions in web services through the capture of log
traces. This service also gives insights into various health-related KPIs of a
service, such as response times, failure rates, and usage.

Read more about Application Insights at the following link:
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-
overview.

Azure Storage services

Azure Storage is a highly scalable, secure, durable, and reliable cloud storage
solution. It is widely used while building applications and is generally
utilized for low-cost, long-term storage requirements.

Read more about Azure Storage services at the following link:
https://docs.microsoft.com/en-us/azure/storage/.

Case study elaboration – Packt Insurance
Inc.
For any enterprise context, API platforms are built using microservices.
Hence, these services can be implemented using one or more API styles that
may be relevant depending on the nature of the business and technical
requirements.

In the following sections, we will expand on the case study scenario by
applying the concepts presented in this chapter. We will investigate the
various API styles that will be useful for implementing the different

https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview
https://docs.microsoft.com/en-us/azure/storage/

microservices. We will also attempt to map some of the Azure services to
create a very basic and high-level architectural blueprint. The sole objective
is for you to understand what steps must be taken to identify architecture
decisions and make a record of them.

API style fitment analysis

From the previous sections, it is evident that an enterprise API platform will
comprise multiple API styles. You must pick the style that best suits the
purpose. While certain styles may be preferred in general, considering that a
wide range of use cases and integration points have to be accommodated, you
will definitely need to try out different API styles.

For the Packt Insurance Inc. scenario, let's analyze which API styles will be
useful to meet the technical requirements of the APIs:

Microservices and API styles

A microservice can comprise one or more APIs. Hence, you may have to
build different types of APIs to meet the purpose of the API.

In the following section, let's identify the various styles that will be used to
build the various microservices for the Packt Insurance API platform:

API platform architecture

Building upon the concepts presented in the preceding sections, let's identify
the various Azure resources that can be leveraged for the Packt Insurance
solution. The idea here is to provide a view on how to group the various
technical capabilities into a logical view that can be expanded and tailored
based on the needs of your project.

A very high-level solution architecture for the Packt Insurance Inc. API
platform is provided here:

Figure 3.8 – API platform architecture

For this case study, we have selected Azure Kubernetes Services as the
microservices platform as it offers a wide variety of benefits for a complex
enterprise-scale application. However, variations of this architecture are also
possible using the other technologies that are listed earlier in the reference
architecture.

The preceding solution architecture depicted is meant to serve as a guide
only, and certain solution concern areas, such as multi-tenancy (deployment
isolation by region) and high availability and disaster recovery strategies
have not been factored in. These topics are covered in subsequent chapters
and the solution implementation patterns are explained.

Summary
In this chapter, we have reviewed some of the most important architecture
principles and the impact they may have on the architecture and design of an
API. We have also done a comparative study of the various API styles and
analyzed what to choose depending on the business context and requirements.

Developers can build an API platform using one or more styles in the Azure
cloud. There are a lot of options when it comes to hosting API solutions.
Each has its own unique advantage. With serverless architectures,
organizations can deploy API solutions really quickly and start realizing the
business benefits.

In the next chapter, we will focus on understanding how to ensure the quality
of your API service or product, how to measure them, and what tactical plans
must be created to achieve this.

Additional reading
Open Group – Architecture Principles:
https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap29.html

Serverless computing and applications on Microsoft Azure:
https://azure.microsoft.com/en-in/overview/serverless-computing/

Azure Architecture Center: https://docs.microsoft.com/en-
us/azure/architecture/

Azure Compute Options Decision Tree: https://docs.microsoft.com/en-
us/azure/architecture/guide/technology-choices/compute-decision-tree

Azure Messaging Choice: https://docs.microsoft.com/en-
us/azure/architecture/guide/technology-choices/messaging

https://pubs.opengroup.org/architecture/togaf8-doc/arch/chap29.html
https://azure.microsoft.com/en-in/overview/serverless-computing/
https://docs.microsoft.com/en-us/azure/architecture/
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/compute-decision-tree
https://docs.microsoft.com/en-us/azure/architecture/guide/technology-choices/messaging

Chapter 4: Assuring the Quality of the API
Service (or Product)
All software engineering teams strive to create a quality product as an output
from the weeks of planning, designing, developing, and testing cycles. This,
however, is not possible unless there is a clear and common understanding of
the quality goals (or attributes) of the product under development.

A product backlog in the form of architecture backlog stories must be
created and prioritized in a timely fashion to accomplish the targets/metrics
set for these quality attributes. Otherwise, late discovery of critical issues, and
subsequent fixing at a later stage in the project lifecycle, will turn out to be
very costly.

The purpose of this chapter is to understand the important quality attributes
that will apply to API-centric solutions. The objective is to assess the impact
of non-functional requirements on the solution design and what trade-offs are
necessary to achieve a highly reliable API platform.

By the end of this chapter, you will understand the importance of creating an
architectural backlog to track solution-critical quality requirements, define
and measure them, and what trade-offs to apply for the given business
context.

In this chapter, we are going to cover the following main topics:

The ISO 25010 standard for software quality

The Architecture Tradeoff Analysis Method (ATAM)

The Azure Well-Architected Framework

API security considerations

Reliability through scale, performance, and availability

Modeling performance based on scale requirements

High-availability patterns

Architecting for operations

Understanding maintainability

Tracking objectives using a quality dashboard

Case study elaboration – Packt Insurance Inc.

FOOD FOR THOUGHT
Measure what matters – explore how you can make use of the Objectives and Key
Results (OKR) framework to capture your architecture-critical nonfunctional
requirements.

The ISO 25010 standard for software
product quality
ISO (International Standards Organization) 25010:2011 defines the
Systems and software Quality Requirements and Evaluation (SQuaRE)
that applies to software engineering. The standard covers two models: a
Quality in Use model, and a Product Quality model. This section primarily
focuses on the latter model as it applies to the design of API-led solution
architectures.

So, what is a quality attribute? In simple terms, it can be viewed as a goal or
a requirement that a system must achieve for its acceptance by the various

stakeholders and users of the system.

THE QUALITY IN USE MODEL
The quality in use model is more appropriate to consider when building UI applications. It is
very important for an overall end-to-end solution, as it focuses on user-centric attributes such
as effectiveness, efficiency, satisfaction, safety, and context comprehensiveness. There is
some degree of correlation with the product quality model. However, for the purpose of this
book, we have excluded it from the discussion in this chapter.

The ISO 25010: 2011 definition (which superseded the existing ISO/IEC
9126 on software product quality) broadly classified the important
characteristics or quality goals of the system into eight categories, depicted as
follows.

Figure 4.1 – Software Product Quality characteristics as per the ISO 25010:2011 standard

These eight characteristics of product quality and their respective subqualities
are described in the following sections. The definitions have been made
contextual to API-centric solutions for you to understand the concepts easily
and how you may correlate them to your API designs.

Functional Suitabil ity

Functional Suitability represents the degree to which an API meets the
defined business requirements both from a user and system perspective.

This characteristic is composed of the following three sub-characteristics:

Functional completeness: The degree to which the set of operations and
functions supported by the API covers all the intended tasks and user
objectives

Functional correctness: The degree to which the API provides the
correct response output for a set of input parameters

Functional appropriateness: The degree to which the set of operations
and functions supported by the API can easily accomplish the specified
tasks and objectives

Guidance for the development team

Functional Suitability focuses primarily on the coverage of the business
requirements, and whether all the specifications that are part of the scope
have been implemented or not. Hence, you can adopt the following
recommended strategies to measure this:

Implement a requirement traceability matrix, by breaking down the
requirements into a well-organized product backlog and then
subsequently detailing out the stories and then capturing the
implementation tasks, test cases, and any test reports.

Ensure that there is a test case for each specific scenario, including both
happy paths and exception flows. Ensure that the pass percentage of such

test cases is greater than 95%.

Analyze usage statistics of the API and observe whether the conversion
rate is high.

Operability/Usability

Operability(Usability) is the degree to which an API can be used by the
intended consumers to achieve the specified goals with greater satisfaction
within the specified context of use.

This characteristic is composed of the following six sub-characteristics:

Appropriateness recognizability: The degree to which API consumers
can recognize whether it is appropriate for their needs.

Learnability: The degree to which API consumers can easily understand
how to use and invoke the API operations.

Operability: The degree to which the API consumers can connect and
use the API.

User error protection: The degree to which the API implements
validations to prevent data loss due to end user errors.

User interface aesthetics: This characteristic does not apply to API
products.

Some tips on UI aesthetics can be referenced here:
https://medium.com/nyc-design/7-rules-for-creating-visually-aesthetic-ui-
6ac0fe8856f.

Accessibility: This characteristic does not apply to API products.

https://medium.com/nyc-design/7-rules-for-creating-visually-aesthetic-ui-6ac0fe8856f

As a reference, you can refer to this guide:
https://www.w3.org/WAI/fundamentals/accessibility-intro/.

Guidance for the development team

Operability measures revolve around the production use of the API platform,
and how easy it is for external developers or partners to integrate their
applications with the public API interfaces. Hence, you can adopt the
following recommended strategies to achieve this:

Implement an API discovery and documentation portal that can be
leveraged by the developer community at the time of integration.

Provide readily usable samples demonstrating how the API accomplishes
the various business operations.

Make use of standardized API styles and connectivity approaches to
avoid requiring any learning curves.

Implement data validation as part of the interfaces to avoid registering
junk or invalid data.

Reliabil ity

Reliability is the degree to which an API can serve its consumers
consistently over a specified period of time.

This characteristic is composed of the following four sub-characteristics:

Maturity: The degree to which the API meets the need for reliability
under normal operation

https://www.w3.org/WAI/fundamentals/accessibility-intro/

Availability: The degree to which the API is operational and accessible
when required for use

Fault tolerance: The degree to which the API is operational, overcoming
any intermittent hardware outages or faults

Recoverability: The degree to which, in the event of an interruption or a
failure, the API can recover automatically to a healthy state

Guidance for the development team

Reliability focuses on ensuring that the API is available to its intended users
without any interruption as per their desired usage. Hence, you can adopt the
following recommended strategies to achieve this:

Define availability requirements and understand downtime implications.

Avoid single points of failure through redundancy.

Prevent data loss or corruption through geo-replication or event-based
patterns.

Implement automation to periodically scan and detect failures.

Implement automatic failover strategies to reduce downtime.

Performance Efficiency

Performance Efficiency represents the overall health and performance of an
API under impact from increased loads or seasonality.

This characteristic is composed of the following sub-characteristics:

Time behavior: The degree to which the API response and processing
times and throughput rates meet the acceptable thresholds defined for the
operations

Resource utilization: The degree to which the API makes use of the
available system resources (namely, CPU, memory, IOPs, and so on)
when performing under an increased load

Capacity: The degree to which the API can meet the maximum limits, as
defined by requests per second (RPS) without significantly impacting
other factors

Guidance for the development team

The Performance Efficiency characteristic attempts to ensure that users are
happy with their experience of the API platform, and any frontend
applications that integrate with the API achieve a good responsive UI. Hence,
you can adopt the following recommended strategies to achieve this:

Architect for scale, identify scaling requirements diligently.

Conduct design and code reviews to identify performance bottlenecks.

Left shift performance testing, making it part of your unit testing.

Establish DevOps practices to detect and alert on performance issues.

Incorporate robust telemetry and logging to measure and monitor the
performance of your API and its internal components.

Security

Security is the degree to which the API protects information and data so that
consumers can access the operations and underlying data as per their
authorization levels only.

This characteristic is composed of the following sub-characteristics:

Confidentiality: The degree to which the API ensures that data is
accessible only to authorized users

Integrity: The degree to which the API prevents unauthorized access

Non-repudiation: The degree to which the API ensures that only verified
transactions are permitted by it

Accountability: The degree to which the API tracks the actions
performed on an entity

Authenticity: The degree to which the API can verify the credentials of
the consumer

Guidance for the development team

Security deals with the overall defense-in-depth principles, attempting to
secure all layers of the solution, which include infrastructure, individual
resources, access paths, and even the data. You can adopt the following
recommended strategies to achieve this:

Establish a security culture – conduct training for the team.

Establish a centralized team of security champions who will dedicatedly
investigate the various security aspects.

Ensure that best practices are followed by the book, and any deviations
are real exceptions only.

Make use of available static analyzers or tools, to scan and detect
vulnerabilities in any code.

Conduct security testing wherever possible, including penetration testing
to prevent any security breaches or mistakes in code.

Compatibil ity

Next, Compatibility is the degree to which the API interfaces can be
consumed and integrated easily with other systems or applications without
impacting any existing solutions.

This characteristic is composed of the following sub-characteristics:

Co-existence: The degree to which the API can support newer versions of
the product without impacting any existing applications or integrations

Interoperability: The degree to which the API can support the exchange
of information with other systems

Guidance for the development team

Compatibility is an important attribute that allows the API to be easily used
by other platforms or solutions, making integrations easier. You can adopt the
following recommended strategies as a team to achieve this:

Make use of API versioning on both data and interface contracts.

Design for backward compatibility.

Make use of industry standards (for example, JSON API and OpenAPI
specifications) while implementing and publishing the API endpoints.

Maintainabil ity

This characteristic represents the degree of ease with which the code and
logic of the API can be modified and deployed to production without much
overhead or cycle time.

This characteristic is composed of the following sub-characteristics:

Modularity: The degree to which the API can be broken into discrete
components such that a change to one component does not have any
significant impact on other components

Reusability: The degree to which the API operations and the underlying
implementation can be easily reused across other API products

Analyzability: The degree to which the impact of any issues can be
easily identified by the API

Modifiability: The degree to which the API can be easily extended
without affecting the quality of the solution

Testability: The degree to which the test conditions for an API can be
easily created and implemented

Guidance for the development team

Maintainability focuses on making the API easily modifiable without
incurring maintenance costs or regression defects, both of which are costly.
Hence, the team can adopt the following recommended strategies to achieve
this:

Make use of static code analyzers to measure code quality.

Foster code reuse, and make use of Dependency Injection or similar

strategies.

Conduct manual code inspections to detect design constraints.

Fully automate API testing.

Left shift functional testing, detecting issues through build breaks.

Portabil ity

Portability is the degree of effectiveness and efficiency with which the API
solution can be transferred from one platform to another or one environment
to another.

This characteristic is composed of the following sub-characteristics:

Adaptability: The degree to which the API product can adapt to the
provisioned hardware or software systems

Installability The degree to which the API can be easily deployed or
uninstalled

Replaceability The degree to which the API can easily be upgraded to a
newer version

Guidance for the development team

Portability attempts to make the API platform easily deployable across
multiple environments without requiring any modifications or significant
effort. Hence, the team can adopt the following recommended strategies to
achieve this:

Achieve 100% automation of deployment procedures.

Conduct deployment testing to ensure the sanctity of the deployment
scripts.

So, how do you measure the quality of any API product? Considering what
we have discussed in the previous sections, it is evident that for some of the
attributes, it will be analytical as you will have quantitative data to
substantiate it, whereas, for many others, it is more of a qualitative aspect
that must be defined through some sort of conditions of satisfaction that are
agreed based on consultation with key stakeholders.

Hence, it is imperative that a good amount of focus is given to the quality
attributes during the initial phases of the development lifecycle. That's the
only way quality-related risks can be identified and mitigated to the
satisfaction of all.

TRACK QUALITY ATTRIBUTES IN YOUR PRODUCT
BACKLOG
As per your organization's internal IT standards, you may use only a subset of the afore-listed
quality attributes. The objective should be to identify clear business goals or metrics that are
applicable to solution quality and then track them consistently to ensure compliance. In the
absence of a tracking mechanism, it will be difficult to certify the quality of your API product.

In the next section, we will take a brief look into the Architecture Tradeoff
Analysis Method (ATAM), from the Software Engineering Institute
(SEI). The goal of ATAM is risk reduction and better architecture decisions
revolving around quality attributes.

Architecture Tradeoff Analysis Method
(ATAM)

Simply put, the ATAM process is a technique that can be used to find the
right tuning of the various quality attributes to achieve the optimal quality for
the given context.

You can read more about the ATAM process at
https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177.

The outputs of the ATAM review process are the following:

An advisory, a recommendation, or a waiver for the target architecture
based on the prioritized list of quality attributes

Identification of the architecture risks that may have a high impact

A record of the key architecture decisions in support of the suggested
solution approach

Thus, we find that ATAM is a crucial and critical activity that must be carried
out while defining the architecture of even API platforms. It is important to
note that architecture can evolve or change over a period and having a record
of the decisions will give a better perspective to the teams on what
alternatives were considered and what was the basis of selecting one
approach.

In the next section, we will review the principles of the Azure Well-
Architected Framework, which provides good guidance around some of the
aforementioned ISO standards to ensure a quality API service on the Azure
cloud.

The Azure Well-Architected Framework

https://resources.sei.cmu.edu/library/asset-view.cfm?assetid=5177

Around July 2020, Microsoft launched the Well-Architected Framework
(WAF) for Azure. The WAF is a collection of industry-relevant best
practices that are divided into five pillars:

Cost management

Operational excellence

Performance efficiency

Reliability

Security

The WAF provides excellent prescriptive guidance that enables architects and
developers to incorporate architecture best practices into their solutions.

Figure 4.2 – Five pillars of the Azure Well-Architected Framework

Read more on the Azure WAF at https://docs.microsoft.com/en-
us/azure/architecture/framework/.

You should consider the WAF guidance for building high-quality API
platforms in Azure. The guidance covers the most important quality attributes

https://docs.microsoft.com/en-us/azure/architecture/framework/

that play a significant role in all your cloud investments.

Let's now review some of the benefits of using WAF in your solutions.

Benefits of using WAF

The key benefits of using the WAF recommended practices while designing
and implementing your API-centric solutions are as follows:

Lower Total Cost of Ownership (TCO):

This is critical for start-ups and small businesses where IT budgets are a
constraint. By making use of Azure resources that offer a consumption-
based pricing model, they can easily achieve cost optimization through a
pay-per-use model.

Large businesses can also optimize their cloud usage costs by leveraging
the various consumption-related metrics and reports available out of the
box in the Azure Cost Management and Billing section. You can analyze
these reports to either remove unused resources or optimize the pricing
tier of various resources.

Identified and mitigated (security) risks:

All businesses operate with a certain degree of risk. The more effective
they are in mitigating the risks, the less disruption and revenue loss they
incur. By following the WAF practices, organizations can proactively
assess risks so that they can be preempted easily.

Release agility:

The cycle time of releasing new services has shrunk significantly. If you
are a digital business, you must look at expediting releases to be
competitive. The WAF guidance is primarily targeted at improving your
ability to deploy stuff to production faster than you might be used to
doing.

Businesses allowed to run 24x7:

The availability of a service when they need it makes customers hooked
onto any platform or application. Hence, most businesses are shifting
toward a 24x7 model with high reliability.

Industry best practices for cloud apps used:

The WAF guidance incorporates learnings from numerous customers
using the Azure cloud. Hence, the best practices list it has is based on
what they have experienced while running their line-of-business and
mission-critical applications on the Azure cloud.

Maximized end customer experience:

The success of any application depends on how well it is adopted by the
partners and the customers, and how easily they can use it to realize their
business benefits. Running ML loops on the feedback captured can help
improve the engagement index immensely.

WAF recommended practices

The following are a few of the important recommended practices of the
WAF:

As you start using the WAF for your Azure cloud solutions, you must clearly
identify the business goals that are relevant for your business context across
the five pillars. You can begin by taking an assessment to measure the current
state and then review the recommendations to define a roadmap of
improvement initiatives.

In the subsequent sections, we will review, in detail, some of the most
important quality requirements and how they may have an impact on your
API-led architectures.

API security considerations
Information security and preventing unauthorized access is the most
important focus area for all API platforms. Attackers are always on the
lookout to exploit any vulnerabilities and over the course of time, cyber
threats have increased tremendously. Teams have been busy detecting these
threats and then subsequently establishing practices and solutions that
mitigate the security risks.

Security is one of the most important aspects of any API-led architecture.
Enterprises must ensure that no data breaches happen as it may have drastic
consequences for the business.

Let's look at some of the core principles of the Security Frame concept,
which can be easily applied to API-led architectures.

Core principles – the Security Frame
analysis

The following categories of security considerations, referred to as Security
Frame in the diagram, explain the core security principles that must be
followed in the design of an API solution:

Figure 4.3 – Security Frame

While Security Frame is a good framework for your security design
considerations, it is not meant to be an exhaustive list of controls that can be
implemented. Security guidelines are ever-evolving as newer threats are
identified. Hence, it is recommended that API development teams constantly
review, evaluate, and revise the security controls applied.

NOTE
The subsequent sections are meant to serve only as basic guidance. Development teams
must do a thorough analysis of their project context to capture important security
requirements, and then plan appropriate controls to mitigate all security risks. As a rule of
thumb, for any software system, security takes precedence over all other requirements.

Authentication

Authentication is the process of proving identity through various means,
such as username and password, certificates, tokens, keys, and so on. This is
an important property to ensure that resources are accessible only to genuine
parties.

Most enterprise applications need to interact with a wide range of
applications, sometimes even legacy applications that are deployed in on-
premises data centers, others being SaaS and cloud-native applications.
Therefore, a wide variety of authentication schemes may have to be
supported.

The following are some of the general authentication schemes that are
typically used by any API platform:

SAML tokens: For applications that rely on federated identity based on
SAML 2.0 protocol

Bearer tokens: For modern applications that rely on Azure Active
Directory (or Azure AD B2C) and similar identity stores, which support
OpenID Connect (OIDC) and OAuth v2 protocols

Client certificates: For applications that are exposed to third parties and
want stronger security assurances, such as revocation, rotation, and so on

Authorization

Authorization is about how the application provides access controls for
roles, resources, and operations. The principle of least privileges is kept in
mind while granting access to any role, resource, or operation.

The following are some of the areas where authorization is keenly analyzed:

Access to resources on an Azure subscription

Access to file shares

Access to data stores such as SQL, Azure Storage, and so on

Access to keys/secrets that are stored in Azure Key Vault

Service accounts under which applications run and so on

API-specific Role-Based Access Control (RBAC) or Attribute-Based
Access Control (ABAC)

ATTRIBUTE-BASED ACCESS CONTROL (ABAC)
Attribute-Based Access Control, also known as policy- or business rules-driven access
control, is an approach that grants or denies access to an API operation depending on
the attributes of the user or the resource and associated data. This is quite a flexible
model of controlling access as the rules or policies can be contextualized to the attributes
of the assigned user, resource, environment, and so on. You can read more about it here:
https://www.sciencedirect.com/topics/computer-science/attribute-based-access-control

https://www.sciencedirect.com/topics/computer-science/attribute-based-access-control

Auditing and Logging

Auditing and Logging, in the context of security requirements, refers to how
security-related events are recorded, monitored, and audited.

For an API platform, all events such as sign-in activities, API access and
errors, sensitive operations, and so on must be audited and logged. Further, it
must also be ensured that sensitive information will not be stored in logs.
Only non-sensitive identifiers such as Event Id and User Id, which are
needed to trace back an operation, must be logged.

GDPR
You must evaluate your logging approach against any GDPR-specific policies that may apply
to your specific context. For data belonging to users who are residents of European Union
countries, additional anonymization and data pseudonymization techniques may have to be
considered before anything gets saved as part of the logs.

Configuration management

Configuration management is about handling security-related configurations
to minimize the security attack surface and enable certain best practices.

Some examples are the following:

Configuring database connection strings or access keys

Configuring security policies such as CORS for APIs

Configuring service throttling limits wherever applicable

Configuring out-of-the-box features such as transparent data encryption
for databases, or cache-related settings

MAKE USE OF INFRASTRUCTURE AS A CODE

For Azure resources, it is recommended that configurations be made consistent using
ARM templates, policies, and/or PowerShell scripts wherever applicable.

Communication security

Communication security is about the secure transmission of data over the
wire. It includes transport-level security to message-level security.

The following are some of the considerations:

All interactions with the API platform must happen over a secure
channel. This ensures that data in transit is always secure.

In scenarios where message-level security is explicitly required, if the
platform provides out-of-the-box (OOTB) security capabilities, for
example, AS2 message encryption, the OOTB configurations must be
leveraged. For AS2 messages, asymmetric encryption is supported, and
the certificates can be configured in the integration accounts.

In scenarios where OOTB message-level security is not available, you
must plan for attaining the confidentiality of messages that are exchanged
between the source and the destination. Additional encryption/decryption
algorithms may have to be considered to process highly confidential
messages.

Cryptography

Cryptography is about how the platform enforces confidentiality and
integrity aspects. Some of the considerations in this aspect are the following:

The use of strong and industry-standard cryptographic algorithms and key
lengths

Tamper-proofing of critical resources (for example, sensitive files, API
parameters, and so on)

Secret/key/certificate management (generation, rotation, revocation, and
so on)

Exception management

Exception management refers to how applications handle errors and
exceptions. It must be ensured that in the event of exceptions, the application
will support graceful failover without revealing sensitive details via error
messages. Moreover, the corresponding error information must be
audited/logged so that suitable actions can be taken as required by the
operations team based on the nature of the incident.

Data validation

Data validation refers to how the solution filters, scrubs, or rejects input
before additional processing, or how it sanitizes the output (if required).

Input data validation must be prioritized and captured as part of the API
requirements themselves. In the absence of any being available, the project
teams must still implement validations on a best-effort basis to prevent any
malicious use of the system.

Sensitive data

Sensitive data refers to how the solution handles any data that must be
protected either in transit or at rest. API platforms use a variety of storage
technologies for persisting their data.

Some of the considerations in this frame include the following:

Ensuring data classification is done per application and sensitive data in
each case is identified

Ensuring controls such as Transparent Data Encryption (TDE) and
column-level encryption are applied to data stores wherever applicable to
ensure the confidentiality of the data

Ensure that source code does not store sensitive data

Ensure that all secrets are stored in highly secure Hardware Security
Module (HSM)-backed stores such as Azure Key Vault or any other
proprietary/third-party secret store

Ensure that all data is encrypted before saving it in storage (encryption
for data at rest)

ENCRYPTION AT REST
In cases where persistent data storage must be used, the corresponding security controls
must be analyzed to ensure the confidentiality of the data at rest. The implementation will
comply with the guidelines for Azure Data Encryption at Rest, available at
https://docs.microsoft.com/en-us/azure/security/azure-security-encryption-atrest.

In the next section, we will discuss the concept of Security Development
Lifecycle processes that development teams must adopt to ensure that
security practices are properly followed by teams.

The Security Development Lifecycle (SDL)

The Security Development Lifecycle (SDL) is a process that emphasizes the
inclusion of additional security practices and activities as part of your

https://docs.microsoft.com/en-us/azure/security/azure-security-encryption-atrest

standard software development lifecycle process to accomplish the security
goals of your solution.

Microsoft pioneered the Security Development Lifecycle process as part of
the Trustworthy Computing initiative around 2002. With the growth of the
internet, various virus and malware attacks were witnessed on a large scale.

Hence, Microsoft realized that it was pivotal to start taking security-related
concerns more seriously and bake them into all its products. Thus the initial
version of the SDL process evolved, also popularly known as Microsoft
Security Development Lifecycle (MS SDL). Since then, many other
software companies have created their own version of the SDL based on the
MS SDL process.

You can read more about MS SDL practices at
https://www.microsoft.com/en-us/securityengineering/sdl/practices.

The following figure depicts the key SDL activities during various phases of
the development lifecycle:

https://www.microsoft.com/en-us/securityengineering/sdl/practices

Figure 4.4 – Key activities of the SDL

The different stages in the SDL are briefly described as follows:

Design: This is the very first phase, during which threat modeling is
conducted for the proposed solution architecture and design. Security
risks, if any, must be mitigated by capturing the controls that will be
applied. Other activities involve a review of the security requirements for
the project as well as the data classification requirements.

Develop: During the Develop phase, the security-related subject matter
expert (SME) will conduct code reviews using either manual inspection
techniques or running static analyzers to detect any security issues in the
code components being developed.

Build & Package (CI): As part of the Continuous Integration (CI)
process, static code analyzers and other security-related tools must be
integrated within the verification builds. This prevents the leaking of
security issues to the stable code branch, as the merge will not succeed if
the build fails.

Deploy (CD): The deployment scripts must also comply with the various
security controls that must be in place for the infrastructure and solution
components. This can be governed through the usage of cloud security-
related policies and standards, which must apply consistently across all
workloads.

Assess (Periodic): Once a stable version of the solution has been
deployed, the SME should conduct periodic reviews to detect any
deviations from the established practices.

Detect: The operations team, as part of ongoing monitoring, must detect
and respond to any security incidents in a timely fashion. A thorough

post-mortem analysis must be done to prevent the recurrence of the same
incidents.

The SDL focuses on eliminating the common mistakes that are repeated by
the development teams. Security defect fixes can be very costly with a high
impact. The SDL defines a set of standardized process steps mandating
certain important security activities such as architecture analysis, code
reviews, and penetration testing to provide some degree of assurance of the
quality of the product being developed.

Reliabil ity through scale, performance,
availabil ity
As discussed earlier, reliability can be broadly defined as the probability that
the system will function as per its expected behavior under the specified
environmental conditions within a specified time.

As you know from the previous chapters, API platforms are the backbone of
the digital channels for an enterprise. Hence, ensuring the reliability of APIs
is fundamental to the adoption and usage of digital experiences. In fact, this
topic is so important that a complete engineering discipline, named Site
Reliability Engineering (SRE), has emerged, and organizations are hiring
professionals to tackle the complexity associated with it, to achieve
appropriate levels of reliability for their digital services.

In the following sections, we will briefly touch upon the important topics
related to SRE. For a more comprehensive study, please make use of the
references listed in the Further reading section.

NOTE:
In this chapter, we will discuss reliability together with scalability, performance, and availability
as these attributes are interlinked, and an impact in one area affects the others.

Site Reliabil ity Engineering (SRE)

SRE is an engineering discipline that is devoted to enabling organizations to
achieve appropriate levels of reliability for their software services and
systems. SRE originated with Google in 2003 when Ben Treynor, now
Treynor Sloss, after taking the leadership role for the production team,
inculcated the thinking among software engineers to design systems from an
operations point of view. Basically, the thinking was that software developers
must focus on the end goal of the platform, which would be measured
through uptime and other operational metrics.

The team came up with many best practices that served as a culture shift for
the development teams. Over the years, many new practices and processes
have evolved, and you will find many books written on the subject.

You can read about building a robust SRE strategy here:
https://docs.microsoft.com/en-us/learn/paths/az-400-develop-sre-strategy/.

SRE and DevOps are better together

DevOps is often confused with being an enhanced version of SRE. However,
it is important to note that SRE has a specific focus area, whereas DevOps is
a much broader subject that tends toward a total cultural shift of the
development team by focusing on various aspects of an end-to-end lifecycle.

While there is some overlap between the principles and practices, they must
be still considered as separate streams. A DevOps engineer should

https://docs.microsoft.com/en-us/learn/paths/az-400-develop-sre-strategy/

collaborate with an SRE engineer to achieve the overall goals of the
enterprise.

Some of the key benefits of using SRE and DevOps are the following:

Better reporting on metrics leading to more stable solutions

Identifying issues and challenges early in the lifecycle

The modernization of operations through automation

Continuous improvement through continuous feedback and learning

A higher customer satisfaction index

Now, let's look at how you can ensure proper reliability.

How do you ensure appropriate reliabil ity?

The degree of reliability required for any business context varies based on
the solution being developed. For example, if your retail outlet store opens
for 14 hours, then your usage of any software system may be limited to the
business hours with peaks at certain times of the day. However, if you are an
online business, then you may require greater reliability as customers may
place their orders at different times of the day based on their convenience.
That is precisely the reason SRE practices can be tailored to achieve the
appropriate level of reliability.

Reliability is defined and measured using Service-Level Objectives (SLOs).
Simply put, SLOs define the target level of reliability that must be achieved
by any service. The goal should be enough for service consumers to remain
satisfied. The SLOs can evolve or change depending on the demands of the

business. However, the service owners must constantly measure the SLOs to
detect any issues and take corrective actions. SLOs are measured usually as a
percentage achievement over a period.

Another important term to note is Service-Level Indicator (SLI). This is the
metric that is used to calculate SLOs. SLIs are based on insights derived from
the data captured through the various signals received when the service is
being consumed by the customer. Hence, an SLI is always measured from a
customer's point of view.

SLOs and SLIs always go hand in hand and are usually defined in an iterative
manner. SLOs are driven by the key business objectives, whereas SLIs are
driven by what it is possible to measure while implementing the service.

When you are building an API service, the first step of the process is to
define the SLO benchmarks that must be achieved by the API once it's
commissioned for production use. This is followed by the identification of
the various metrics (or SLIs) that must be monitored for the service.

SET REALISTIC RELIABILITY GOALS
Having a reliability goal of 100% is unrealistic. It is practically impossible to achieve this
despite having redundancy in hardware or automated health checks with failover and so on.
Hence, it is typically measured in terms of 9s (nines) as 99%, 99.9%, 99.99%, and so on.

It is important to conduct a benefit analysis when designing systems with high-reliability goals,
as there will always be a cost angle involved. Unless the revenue generated justifies the
operational expense, reliability goals must be scrutinized to keep them appropriate.
Sometimes even having lower reliability goals such as 90% may be acceptable for the given
business context.

In subsequent sections, we will look at some of the commonly used SLOs
and SLIs for an API service.

Commonly used SLOs for an API service

Some of the commonly used SLO types for an API service are listed here:

Response Time Latency

Response Time Latency is the amount of time elapsed between when a
request for an operation is made and when the invoker can make use of
the returned result. Latency is typically expressed as multiple target
values (in milliseconds) across separate percentiles.

Success Rate

Success Rate measures whether the service is performing as expected
(that is, not returning errors for every request). It is measured as the
number of successful events divided by the number of total events,
typically expressed in 9s.

Capacity or Throughput

This is the number of throttling-based responses when capacity is/is not
available.

Availability

Availability measures the service's uptime, measured from the perspective
of a customer trying to make use of the service, and is typically measured
in 9s. Availability SLOs are similar to Success Rate SLOs but do not
verify that the return results match what is expected of the requests,
merely that return results are flowing to the user. As a result, Availability
SLOs should have a higher number of 9s than a Success Rate SLO.

Interruption Rate

Interruption Rate measures the exact count of a specific type of event on a
specific type of resource (for example, the number of VM reboots). Most
services should not make use of Interruption Rate SLOs because a
specific count of events typically does not scale as the number of users of
the service scales.

Data Latency (Freshness)

Data Latency can be expressed as data freshness, or how old the data can
be and still be served to users. Patch age is a form of latency SLO.

Having reviewed the important SLOs that must be defined for your API
services, you now will gain an understanding of the related SLIs and how to
measure them.

Defining, implementing, and measuring
SLI metrics for an API platform

SLI metrics indicate the degree to which a service is providing the good
experience that it was designed for. Hence, it can be expressed in the form of
a ratio of two numbers, the numerator being the number of good events and
the denominator being the total number of events. For an API service, events
refer to the application-specific metrics that are captured during execution
either as telemetry data or processed information.

For API platforms, the following SLIs are very common:

A few examples of SLIs are as follows:

The number of HTTP requests that were completed successfully within
1000ms / total number of HTTP requests.

The number of search results that returned any products published to the
catalog within 3 seconds / total number of searches.

NOTE:
There may be additional SLIs that you can measure to improve the overall reliability of
the platform.

Once the SLI metrics have been defined, you must start analyzing what
events or telemetry data to capture to measure the respective SLIs. For
example, to measure availability, you must capture events to indicate whether
the API service successfully processed your request or not. For HTTP-based
services, Success or Failure is defined through HTTP status codes. Hence, the
API design and implementation must ensure that proper HTTP status codes
are emitted by the service while processing any request. SLI metrics are an
important input to the API implementation.

For cloud-based systems, some of the metrics are available out of the box
using the diagnostic and monitoring support available for the resources.
Depending on your specific SLI requirements, additional monitoring data
must be captured to calculate the metrics.

Percentile distribution and period of
measurement

The two factors that play an important role in the measurement of the SLIs
are the following:

Percentile Distribution: For some of the SLIs, it is a general practice to
calculate them using a percentile distribution technique. This gives better
results as there will always be outliers that can skew the numbers if, say,
a mean or median distribution technique is used.

Period of Measurement: The period of measurement while defining an
SLO is also very important. There will be a load on the system only
during specific periods, and the remainder of the time, the system will be
idle. Hence, the period of measurement is an important consideration, so
that the reliability of the service can be guaranteed when it is likely to be
used.

This window can be 5 minutes to 24 hours depending on how you would
like to monitor and calculate the SLI metric. Choosing the time window
of measurement is very important as it must be aligned with the end users'
expectations. The service must be available when they need it.

For example, let's consider that we want to measure the latency of API
requests and define 3 seconds as the threshold for optimal performance.
Hence, if we sort the response times for different API requests over a
measurement window of, say, 1 hour, we may encounter a few of the API
requests taking longer than 3 seconds, whereas most of them respond within
the threshold limit. This is the expected behavior of the system.

The percentile distribution is meant to exclude outliers that may be due to
intermittent issues as there are always too many parameters to control for any
request. Usually, if the service responds properly within, say, the 90th or the
95th percentile measurement, it will be considered as having met the SLO.

In the next section, we will understand in a little more detail how to apply the
SLIs to calculate the SLOs for your API service.

Using SLIs to calculate the initial SLOs for
your API service

Monitoring logs will get captured automatically once the API service has
been deployed and is in use. Now, let's say we analyze the data for, say, 1
week, and observe the following facts:

Total requests: 123,456

Total successful requests: 123,204

90th percentile latency: 497

95th percentile latency: 870

99th percentile latency: 1024

Hence, for the SLO types, we can do the calculations as follows:

Availability = (123,204 / 123,456) = 99.8%

Latency = 90% (approx.) of the requests were served within 500

Latency = 98% (approx.) of the requests were served within 1000

Considering the numbers above, we can start seeing some trends around the
SLOs.

Now, let's say that at the time of the planning phase, we defined an
aspirational latency SLO target of 90% of the requests will be processed
within 500 ms with a success rate of 99% over a period of 1 week.

 ms

ms

 ms

ms

ms

With the data available from the logs, we can easily identify whether the SLO
target was met or not. You can apply the same approach to identify
compliance with other SLOs.

WHAT ARE SERVICE-LEVEL AGREEMENTS?
Service-Level Agreements (SLAs) are agreements between a service provider and the
customer of the service that define the degree of adherence to the agreed SLOs. SLAs carry
legal and commercial penalties if they are not met by the service provider.

Modeling performance based on scale
requirements
For a software system, performance generally refers to the overall
responsiveness of a system when executing an action within a specified time
period, while scalability is the ability of the system to handle increased user
loads without constraining the resources that may have an impact on the
performance of the system.

A system is deemed as scalable if the underlying resources are made
available dynamically to support the increase in load. Cloud applications
must be designed for scale and the traffic volume is difficult to predict at
times. There may be seasonal spikes impacting the scale requirements,
especially in a multi-tenant kind of scenario, when the service may serve
requests for multiple tenants.

So, it is a good practice to design applications in such a way that they can
scale out automatically to meet the peaks in demand. Basically, the system
should just scale up or down based on the load. Scalability concerns not just

compute instances, but other elements such as data storage, messaging
infrastructure, and more.

HORIZONTAL VERSUS VERTICAL SCALING
Horizontal scaling or scale out basically refers to the ability of the cloud service to spin out
additional compute instances or nodes to improve the performance of the application when
under increased load, whereas vertical scaling or scale up refers to the ability to add more
resources such as CPU, memory, and so on to the same cloud service instance to handle the
increased load. Horizontal scaling is preferred over vertical scaling for API microservices as it
ensures more predictable performance.

Hence, all enterprise systems must be designed and implemented to provide
the right user experience for the expected levels of load. Otherwise, the
impact could be catastrophic and may drastically impact the bottom line of
the organization.

A common mistake seen among developers is the fact they tend to think of
performance very late in the development cycle. They focus too much on
functional requirements and do not consider the performance implications of
the proposed solution design. Issues or bottlenecks can surface due to a
variety of reasons, from poor architecture and design, bad code, or
inappropriate resource allocation to even deployment scaling issues. The
earlier a risk or issue is identified, the better the mitigation plan will be.

Hence, it is important to note that ensuring application performance cannot be
a one-time activity. Throughout the lifecycle stages, certain specific activities
must happen to manage the overall performance of the solution and achieve
the business objectives. With the adoption of Agile methodologies, managing
application performance is more of an iterative process.

In the next section, we will understand how to apply a process-oriented
technique to manage the performance of an application.

The API (or application) performance
management l ifecycle

The performance of an API must be managed from its inception, through its
upgrades and extensions, to the point when it is deprecated or no longer in
use. Hence, a robust governance process must be in place to ensure that
performance issues are detected and fixed early before they cause any major
outages impacting the business.

Let's look at the various stages that comprise the performance management
lifecycle:

Figure 4.5 – API performance management lifecycle

Each step of the lifecycle is briefly described here:

Performance Objectives: Define performance SLOs/SLAs for the
different scenarios.

Performance Modelling: Identify business-critical workflows and
transactions, and conduct modeling to understand performance-related
implications.

Design Guidelines: Prepare performance design guidelines, and suggest
business workflow modifications if any.

Implement Design Guidelines: Implement performance design
guidelines within the solution components including instrumentation to
capture metrics and conduct performance design reviews.

Performance Testing: Conduct load/stress testing as per the load profile
distribution to capture the metrics related to the health of the platform.

Bottleneck Analysis: Identify, analyze, and remove bottlenecks in
various components through code inspection and reviews.

Continuous Monitoring: Establish continuous monitoring and alerting
infrastructure as part of the DevOps processes.

Performance Governance: Establish performance governance consisting
of well-defined processes and teams to sustain the performance SLOs.

From the preceding section, we can understand that by adhering to a
structured and disciplined approach, we can achieve the performance
objectives for the API.

Let's look at a checklist of activities for development teams that can be used
while preparing any task plans.

Checklist for development teams

Performance modeling, being an important activity, must be done
meticulously to achieve the right outcomes. The focus on the goals and
objectives at each stage of the development lifecycle is important. The
following are important steps that development teams must follow:

1. Create a model for predicting performance. Capture both scalability
requirements and the aspirational SLO definitions.

2. Add a user story for each performance-critical scenario under the
features.

3. Create a performance model for each scenario – this performance model
is input to the development team to ensure that the processing times for
each step in the scenario are within the times allowed in the model.

4. Link the functional feature/user story with the performance user story for
tracking.

5. Link performance test cases related to the critical scenario to the user
story.

6. Use the status of the user story to track it as it moves from one state to
another:

a. New: Not yet approved by customer stakeholder

b. Approved: Discussed and agreed by customer stakeholder

c. Verified: Performance SLO verified using a performance test.

7. Design the system keeping performance objectives as an important
criterion.

8. Implement and conduct performance tests on the solution to evaluate the
application performance based on expected load conditions.

9. Analyze the findings to identify improvement areas.

10. Optimize performance and continuously monitor for issues.

The steps listed here are just a starting point, and you can expand on these to
define a more detailed process for your teams.

Performance modeling is a very important activity that must be conducted
seriously to derive the right architectural decisions. Seasonal increases in
loads and other one-time business events may have a direct impact on the
overall load on the platform.

Hence, all possible scalability requirements must be considered during the
modeling activity to understand the constraints of the system. While the
cloud is about elastic scale, there are upper limits to everything. API
platforms can be implemented using a wide variety of Azure services.
However, a thorough analysis of the pros and cons of each architecture
approach is important to achieve the right level of scale and performance.

In the next section, we will look at patterns for ensuring the high availability
of your API service.

High-availabil ity patterns
High Availability (HA) is the ability of an application to continue running in
a healthy state without significant downtime, absorbing temporary failures in
dependent services and hardware. Most application strategies for high
availability involve either redundancy or the removal of hard dependencies

between application components. It is defined using the nines approach (for
example, two nines = 99%, three nines = 99.9%, four nines = 99.99%, and so
on).

For API platforms, the following strategies are typically adopted to offer high
availability:

Load balancing across instances: APIs will be designed to scale out by
adding more instances. Load balancing strategies will improve resiliency
by removing unhealthy instances out of rotation or service.

Geo-redundancy: API platforms will be designed in a way that the
Azure resources will be deployed in two geographically distributed
locations so that an outage in one of the regions will not impact the
availability of the API.

Using autoscaling to respond to increases in load: The underlying
Azure resources allocated for an API will be configured to scale out
automatically as the load increases gradually.

Fault detection and retry logic: The components within an API must
detect transient failures and implement some sort of retry mechanism to
make an attempt to complete the transaction.

Asynchronous communication and durable queues: Asynchronous
communication patterns reduce bottlenecks in distributed applications,
thereby leading to the improved availability of the system.

The messages (part of the request) are written to durable storage such as
Azure Storage or Service Bus. In the event of transient failures within the

processing pipeline, the messages are not lost. These will be retried after
the service is back online.

Refer to the Azure Architecture center resources on building solutions for
high availability: https://docs.microsoft.com/en-us/azure/architecture/high-
availability/building-solutions-for-high-availability.

High-availabil ity calculation

End-to-end HA for a cloud-based API solution is heavily dependent on the
availability of the underlying building blocks or resources used for it. It is
calculated as a multiplier of the availability numbers of each resource that is
part of the request path.

For example, say an API platform is composed of four blocks, namely, the
firewall, the gateway, the compute service for the hosting of the API, and the
database.

The overall availability of the platform will be calculated as follows:

Availability = (availability of Firewall) x (availability of Gateway) x
(availability of Compute) x (availability of Database)

So, let's say the individual availability numbers of the components were the
following:

Firewall: 99.9%

Gateway: 99%

Compute: 99.3%

https://docs.microsoft.com/en-us/azure/architecture/high-availability/building-solutions-for-high-availability

Database: 99.5%

Then the availability of the platform would be the following:

0.999 x 0.99 x 0.993 x 0.995 = 0.9771 = 97.71%

The calculations will change if there are multiple load-balanced paths. Thus,
when designing API platforms, the architecture must consider the fact that the
more components there are in the flow, the lower the availability of the
platform will be.

In the next section, we will look at how to architect your API solution to
include capabilities that would be beneficial for the operations and support
team.

Architecting for operations
API platforms on the cloud are analogous to a distributed computing
environment, making them relatively complex with a lot of moving parts.
Further, transient failures of cloud resources are quite common and hence
applications must be designed for resiliency. Hence, there is an imperative
need to architect and design all modern applications with a production-first
mindset.

Basically, the objective should be to bake in as much telemetry as possible,
so that the operations team can monitor the site for any error conditions and
then remediate any live site issues with proper root cause analysis. Two of
the most important practices in this regard are the following:

Logging, monitoring, and alerts

Feature flags

Let's understand these in the next sections.

Logging, monitoring, and alerts

Logging and monitoring play a crucial role in the timely detection of issues
and subsequent remedial action by the operations team. All API platforms
must be designed with adequate logging and telemetry. In fact, it is a good
development practice to incorporate as much logging as possible using
various categories of log severity types, such as Verbose, Information,
Warning, Error, and Critical. This way, developers can easily diagnose
issues by tracing a request through the various loops and paths.

Application Performance Monitoring (APM) makes use of analytics from
the captured logs to provide feedback to the development teams on the
overall health of the application, including performance and usage.

Azure provides the ability to configure alerts based on specified
preconditions as well. Operations support teams can respond to these alerts to
restore the service back to normal conditions.

Learn more about best practices for monitoring in Azure here:
https://docs.microsoft.com/en-us/azure/architecture/best-
practices/monitoring.

Feature flags

https://docs.microsoft.com/en-us/azure/architecture/best-practices/monitoring

Use feature flags for turning individual features on and off, which allows
many small incremental versions of software to be delivered without the cost
of constant branching and merging.

You can read more about feature flags here: https://docs.microsoft.com/en-
us/dotnet/architecture/cloud-native/feature-flags.

Understanding maintainabil ity
All software systems evolve over time. New enhancements and bug fixes
must be planned and rolled out on a periodic basis. The term maintainability
refers to the ease with which the software solution or component, or even a
code file, can be modified or updated without incurring significant
maintenance costs.

There are two major categorizations of maintainability: proactive and
reactive.

Proactive maintainabil ity

Proactive maintainability refers to the adherence to software development
best practices while writing code for the various components of a solution.
This includes both the modularity and testability of the components. The
code should be easily changed without breaking the build or introducing any
regression issues. In the longer term, it should be able to support
enhancements with the addition of more features and capabilities.

Managing technical debt for a product is very important. Owing to
numerous constraints, coding issues or design issues accumulate. These may

https://docs.microsoft.com/en-us/dotnet/architecture/cloud-native/feature-flags

manifest as bugs and disrupt the operation of a service. Hence, while
technical debt is fixed as part of the code cleanup or refactoring activity, the
business logic must not change. This will ensure that the service continues to
function even after the changes have been incorporated.

Reactive maintainabil ity

Reactive maintainability refers to the ability to repair and restore a service
back to its normal operations after an incident has been registered. This is
heavily dependent on the incident management procedures in place to
respond to live site incidents. Postmortem analysis and other incident data
analysis must be carried out to understand the root causes of issues. This is
required to improve the system to eliminate the recurrence of similar
incidents in the future.

Maintainability is linked to availability in the way that downtime is incurred
due to maintainability, lowering the availability of the system.

In the next section, we will cover an approach for how to track your quality
objectives and requirements using a quality dashboard.

Tracking objectives using a quality
dashboard
It is recommended that API development teams should create a dashboard to
track the quality attributes related to important business goals for a solution.
These dashboards, also known as quality dashboards, provide a point-in-
time view of the state of the solution with respect to the envisaged quality

objectives. The data should be periodically reviewed and action items
captured must be resolved to progressively improve the overall health of the
solution.

A few of the important metrics that must be tracked using these dashboards
are the following:

An architecture backlog populated with quality-specific requirements and
their respective lifecycle statuses

The classification of bugs into non-functional categories and their statuses

A count of automated tests and their test execution statuses

The performance metrics of the solution

Any other metrics as per the requirements of the key stakeholders

The objective of quality dashboards is to provide a snapshot of the top
concerns that must be addressed by the project team to offer a highly reliable
service.

So far in this chapter, you have gained an understanding of the important
quality-related considerations that apply to API architectures. In the next
section, we will expand on our case study and apply the concepts presented in
this chapter to assure the quality of the API product.

Case study elaboration – Packt Insurance
Inc.
Let's now work through the case study and see what steps are to be taken by
the team at Packt Insurance to achieve quality expectations for the solution.

Through discussions with the various stakeholders and business teams at
Packt Insurance, the development team captured the following high-level
requirements:

The solution should be multi-tenant and deployed initially in one Azure
region. It should be easy to replicate the deployment in other Azure
regions.

Deployments to production environments will be fully automated and the
cycle time will be 2-3 weeks max.

Automated tests must be run on the APIs to check for regression issues
before they are released to production.

The public endpoints for the APIs must be secured through OAuth.

The API platform will not store any encrypted data. The highest
classification of data handled by the platform will be Confidential / High
Business Impact. The platform will handle PII data and must comply
with country-specific laws.

All APIs must respond within 3-5 seconds; read calls must be faster than
updates.

All APIs must support at least 20 RPS (average) and peak traffic of 50
RPS (maximum).

A monitoring and alert mechanism should be in place to notify the
support team whenever health degradation happens.

In the event of a disaster, the recovery time objective will be 8 hours, and
the recovery point objective will be 1 hour.

NOTE:
A few of the quality requirements will be addressed through DevOps practices. Those are
discussed in Chapter 7, Accelerating through DevOps Essentials.

Important SLOs for the API platform

For the Packt Insurance Inc. API platform, the development team came up
with the following SLOs:

95% of all READ requests will be responded to within 1 second
aggregated over a 1-day period.

95% of all CREATE/UPDATE requests will be responded to within 3
seconds.

99% of all requests will be responded to within 5 seconds without any
failures.

99.9% of all requests will succeed within a 5-minute window.

99% of requests during the peak 1-hour window will be successful.

Less than 1% of requests will error out during the peak 1-hour period.

The Packt Insurance development team will adjust the design of the API
platform to achieve these goals.

Architecture backlog – focus on quality
and handle technical debt

Architecture backlog refers to the set of stories that do not address the needs
of an end user persona directly. However, they are created to address
technical risks and issues, as well as to clean up any technical debt. Hence,
while measuring the velocity of the teams, a certain amount of capacity
should be set aside to handle the architecture backlog stories.

Packt Insurance Inc. created an architectural backlog. The team used Azure
DevOps as its work tracking system. They created Epic as the architecture
and added features and stories underneath it:

Figure 4.6 – Sample representative architecture backlog view in DevOps

The Packt Insurance development team identified an initial list of prioritized
architectural stories during Sprint 0. During the initial sprints, the team will
expand the features and add more stories to meet the various SLOs and other
quality-related metrics for the platform.

NOTE
The backlog depicted in the preceding section is not meant to be an exhaustive list. The
central idea here is to emphasize on the point that all project teams must create a backlog of
architecture stories to track various non-functional requirements and take them through the
lifecycle stages of design, development, and testing for closure.

What we have presented as part of this case study is only a minimum starting
point. You are encouraged to apply your real project experiences, further
ideate on these, and identify additional improvements or considerations that
may be necessary to build a great API product.

Summary
In this chapter, you reviewed, purely from an architecture standpoint, how
quality requirements are critical to the success of the API platform. Hence, it
is pertinent to recommend that, during the API development lifecycle stages,
you prioritize any architectural stories that are part of the backlog, along with
any functional stories. This, however, requires executive buy-in for the
strategy, and manpower investment to support the approach. Quality
outcomes are dependent on the culture of the team.

We also briefly touched on the topics of API security, reliability, availability,
and performance. You now understand how maintainability is linked to

availability and reliability, and why you must be careful about your choice of
the appropriate levels of reliability.

There is always a trade-off between cost optimization, performance, and
reliability. Hence, you should evangelize within your teams on how optimal
service reliability can be achieved by adopting SRE practices. Building
software with a production mindset is a total paradigm shift for development
teams. It requires a good amount of discipline and honest and intentional
effort to be successful at that.

In the next chapter, we will go over RESTful APIs – the new web standard.

Further reading
ISO/IEC 25010:2011 specification:
https://www.iso.org/standard/35733.html

ISO 25010 definitions: https://iso25000.com/index.php/en/iso-25000-
standards/iso-25010?start=0

Azure Well-Architected Framework: https://docs.microsoft.com/en-
us/azure/architecture/framework/

Architecture Tradeoff Analysis:
https://www.geeksforgeeks.org/architecture-tradeoff-analysis-method-
atam/

Architecture Assessment: https://itabok.iasaglobal.org/architecture-
assessment/?mc_cid=26b6a7c986&mc_eid=1ce5922cf6

Microsoft Security Development Lifecycle:
https://www.microsoft.com/en-us/securityengineering/sdl/

https://www.iso.org/standard/35733.html
https://iso25000.com/index.php/en/iso-25000-standards/iso-25010?start=0
https://docs.microsoft.com/en-us/azure/architecture/framework/
https://www.geeksforgeeks.org/architecture-tradeoff-analysis-method-atam/
https://itabok.iasaglobal.org/architecture-assessment/?mc_cid=26b6a7c986&mc_eid=1ce5922cf6
https://www.microsoft.com/en-us/securityengineering/sdl/

Site Reliability Engineering: https://docs.microsoft.com/en-us/azure/site-
reliability-engineering/

Engineering for Performance: https://docs.microsoft.com/en-us/previous-
versions/msp-n-p/ff647781(v=pandp.10)

Significant benefits of SRE: https://blog.goodelearning.com/subject-
areas/devops/what-are-the-most-significant-benefits-of-search-reliability-
engineering-sre/

https://docs.microsoft.com/en-us/azure/site-reliability-engineering/
https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ff647781(v=pandp.10)
https://blog.goodelearning.com/subject-areas/devops/what-are-the-most-significant-benefits-of-search-reliability-engineering-sre/

Chapter 5: RESTful APIs – the New Web
For most enterprises, using industry-accepted implementation standards is
critical for ensuring a consistent experience across the catalog of APIs that
are deployed. Adhering to one common standard simplifies the development
and deployment processes, thereby ensuring reliability and maintainability.
While there may be an initial learning curve for the team, but these
investments will yield better results with the broad spectrum of experience
within the development teams.

The purpose of this chapter is to look at the REST standard, which builds
upon the Hypertext Transfer Protocol (HTTP) standard. The REST API
style is the most popular standard and is commonly used in all modern
applications. REST is becoming a new web standard and is being adopted as
an OpenAPI Standard by most organizations, including cloud platform
service providers. The cloud services natively support REST API endpoints
that can be used for various operations, including administrating the
respective platform services in a consistent manner.

We will also briefly touch on the benefits of using RESTful APIs, as well as
how to leverage the existing tools to quickly design and produce
documentation for discovery, and publishing the API.

As such, we are going to cover the following main topics:

Understanding RESTful APIs

REST architecture constraints

Advantages and challenges of building a RESTful API

Exploring the checklist for building RESTful APIs

OpenAPI Specification

By the end of this chapter, you will understand the important technical design
considerations to be kept in mind while building RESTful APIs for the
enterprise.

NOTE
This chapter is not meant to serve as a comprehensive guide on the REST API standard.
Please make use of the references at the end of this chapter to augment your understanding
of the topic.

Technical requirements
There are no specific technical requirements for this chapter. However, to
understand a few concepts presented here, it will be useful to have access to
the following:

Visual Studio Code (https://code.visualstudio.com/)

Postman (https://www.postman.com/)

The code from this chapter can be found on GitHub at
https://github.com/PacktPublishing/Designing-API-First-Enterprise-
Architectures-on-Azure/tree/main/Chapter5

Understanding RESTful APIs
The term REST is an acronym for REpresentational State Transfer, which
is an architectural style for creating web services that comply with a set of

https://code.visualstudio.com/
https://www.postman.com/
https://github.com/PacktPublishing/Designing-API-First-Enterprise-Architectures-on-Azure/tree/main/Chapter5

rules and constraints. REST only uses a subset of the HTTP protocol
standard, so is quite popular among the developer community for building
backend services that offer flexibility in the way data (resources) can be
accessed.

As we discussed in Chapter 3, Architecture Principles and API Styles, a
REST-based architecture system can be visualized as having two parts;
namely, the client, who requests the resources, and the server, which has the
resources:

Figure 5.1 – REST architecture style

NOTE

When using REST APIs, different data formats are supported, such as XML, YAML, or any
other machine-readable format. However, JSON is the most preferred and commonly used
format.

HTTP-based web services that adhere to the REST guidelines are known as
RESTful APIs. These APIs use existing HTTP methodologies defined by the
RFC 2616 protocol to process client requests. You can find more details on
RFC 2616 here: https://www.w3.org/Protocols/rfc2616/rfc2616.html.

When using the REST standard, please keep the following in mind:

All interactions between the client and server are message-based, and the
HTTP standard is used to describe these messages.

All interactions follow a simple request/response mechanism. A request
will always receive a response, even if there was an error. HTTP status
codes are used to denote the outcome of the request.

There are five methods that are commonly used in an HTTP REST-based
architecture; they are, POST, GET, PUT, PATCH, and DELETE. These
correspond to the create, read, update, and delete (or CRUD) operations of
the representative business object, respectively. The business object allows us
to abstract over the underlying system. There are other methods that are less
frequently used, such as OPTIONS and HEAD.

The following data formats are supported by REST APIs:

application/json

application/xml

application/x-wbe+xml

application/x-www-form-urlencoded

https://www.w3.org/Protocols/rfc2616/rfc2616.html

multipart/form-data

In the next section, you will learn how to correctly use HTTP verbs while
defining your API operations, along with the expected status codes. It is
important for developers to understand the usage of the API, and interpret the
response that's received.

Using HTTP verbs for your CRUD actions
correctly

REST API operations are always modeled as one of the HTTP operations. A
mapping between the HTTP verbs and the respective CRUD action is
depicted here. Keep this in mind while preparing the interface definition of
your API. The behaviors and actions of the entity must be correctly mapped
by using HTTP verbs:

KNOWLEDGE CHECK – HOW WELL DO YOU KNOW
THE HTTP STANDARD?
Designing APIs the REST way requires having a good understanding of the HTTP standard
and its associated concepts. Please make use of the references provided in the Further
reading section.

In the next section, we will briefly touch on the history and evolution of inter-
machine application communication techniques.

History of inter-machine application
communication

With the growth of the internet, there was a pressing need to open the
boundaries of communication among the components/parts of a distributed
system. Around early 2000, client-server-type applications started
communicating over HTTP, which lead to the adoption of new standards
such as Simple Object Access Protocol (SOAP) and Web Services
Description Language (WSDL). Legacy n-tier applications that had been
built using CORBA/COM+/DCOM/RPC had to be redesigned to allow the
business tier to be exposed as HTTP web services.

As more API-based services/applications started emerging, REST-style
architectures became more popular. Software developers found the standard
quite easy to use and adopt (even when compared to SOAP web
services):

Figure 5.2 – History of inter-machine communication techniques

Despite the popularity of REST, newer protocols such as Graph Query
Language (GraphQL) and Open Source Remote Procedure Call,
originally developed by Google (gRPC), are also gaining in popularity,
however, the REST-based API style has remained the most preferred
technique while building data-driven API services. In fact, many of the new
architecture styles that make use of the HTTP protocol are only an extension
of the REST standard.

In the next section, we will review some of the constraints that are imposed
by the REST architecture style.

REST architecture constraints

In Chapter 3, Architecture Principles and API Styles, we discussed different
architecture styles and their use, depending on the use case's suitability. The
REST architecture style, though widely adopted, has a few limitations that
must be understood properly before you decide to use this style. These
limitations merely stem from the guidance around building strictly RESTful
APIs. But within an enterprise, it is quite likely that deviations may exist due
to standards not being interpreted properly by the development teams. It's
important to understand what makes a REST API truly RESTful, and why
these constraints exist, before building your API.

In general, there are primarily six key constraints that apply while building
RESTful APIs:

Uniform interface: This is the key constraint that differentiates a REST
API from other types of API implementations. It revolves around the idea
that HTTPzzbased services can be seen as web resources, and there may
be a uniform way of interacting with and accessing those resources,
irrespective of the type of client application (desktop or mobile). This
strategy of decoupling a client (typically, a UI application) from its
backend API service (hosted in a separate server) allows the application
to evolve independently, without having the application's services,
models, and actions, being tightly coupled to the API layer itself. All the
clients consume the published uniform interface for communication.

There are four guidelines that are part of the Uniform Interface principle.
They are as follows:

a) Resource-based: It should be possible to distinguish and identify the
resource based on the request. The naming convention that's followed for

the URL paths must clearly state the resource being requested.

An example is APIs/customers.

b) Manipulating resources through representations: The client has
received a representation of a resource and has information about the
various operations, such as delete or update, that may be performed on
the resource based on access permissions.

An example of this is DELETE API/Customer/<Customer Id>.

c) Self-descriptive messages: The messages that are received by the
server are self-contained and informative enough to describe the message
so that it can be processed easily by the server.

d) Hypermedia as the Engine of Application State (HATEOAS): The
response can contain additional links to direct the client to other resource
URIs for requesting additional information about the specific resource.

Client-server model: In a distributed application environment, the client-
server model refers to separating tasks between two systems or
applications; namely, the server and the client. The client sends a request
to the server to fetch data or execute an action, while the server receives
the request and further executes the function as requested.

The REST style architecture is analogous to the client-server
architecture. This constraint operates on the concept that the client and the
server should be separate from each other and allowed to evolve
individually. The server application provides a layer of abstraction over
the underlying logic and data layer. The client applications that initiate

the operations on the server do not know about the logic, nor does the
server application know anything about the client frontend app.

Stateless: REST APIs are stateless. This means that calls can be made
independently of one another. The client must include all the information
and data that's necessary to complete the request on the server. The clients
can pass this as part of the query parameters, headers, and URI. This
feature of statelessness offers high availability for the API service as it no
longer needs to maintain or manage the state of the client. However, as a
drawback, it requires the client to send too much information to the
server. This reduces any scope for network optimization and usually
requires more bandwidth.

Cacheable: The output response of a REST API request can be cached on
the client. Each response should include information (typically, in
response headers) to indicate whether the response is cacheable and the
overall duration for which the response can be cached on the client. Due
to its stateless nature, a REST API may require scalability to handle large
loads of incoming and outbound calls. Hence, it is recommended that
caching best practices are followed while designing and implementing the
API, to avoid unnecessary round trips.

Layered system: REST APIs usually have different layers as part of their
architecture. These individual layers have specific purposes and work
cohesively to build a hierarchy that helps create a more scalable and
modular application. The modularity and extensibility of the API depends
on the number of layers. Data exchange across layers happens through a
published data model or data contract.

Code on demand: Code on demand is an optional feature of REST and
allows code to be transmitted via the API for use within the application.
Examples of code on demand may include compiled components such as
Java applets and client-side scripts such as JavaScript. However, this is a
rarely used feature of REST. Hence, this constraint does not apply to
most of the REST API implementations.

In the next section, you will explore the benefits and challenges of using the
RESTful API style within your API-centric solutions.

Advantages and challenges of building a
RESTful API
There are a few advantages, as well as common challenges, when it comes to
building RESTful APIs. These advantages and challenges will be explained
in detail in the following subsections.

Advantages

The RESTful API style offers significant advantages compared to other
styles. Hence, when it comes to building API-based enterprise applications,
the REST standard is the most preferred specification in the IT industry.

The main benefits are as follows:

Scalability: This is the most important quality when you're adopting the
REST standard. Owing to the separation between the client and the
server, the development teams can plan to scale up/out the REST APIs,
independent of how the clients will consume it. This concept of

separation of concerns, coupled with stateless design, facilitates the
development of APIs that are modular in nature. Each of the APIs can be
scaled independently, as per requirements.

Flexibility and portability: Since the API layer is designed to provide
abstraction over the backend database, this serves as a repository pattern,
allowing database changes to be incorporated without impacting the
clients. It makes adopting the REST standard flexible and portable.

Independence: The REST standard is an independent platform and can
be implemented by different technology platforms and programming
languages. Different project teams, as per the available skillset within
their respective teams, can independently develop RESTful APIs. This
can then be easily integrated as part of the larger ecosystem of APIs
within the enterprise.

Easy to learn, understand, and implement: The REST API standard is
quite easy to follow and use since it is based on the HTTP standard,
which is typically used to build web services. The rules for building a
REST API are mostly limited to CRUD-based operations, so it can be
easily implemented using any programming language.

Supports both JSON and XML: REST APIs can support both JSON and
XML as data formats for exchanging information. Hence, this makes it
quite powerful to integrate both a legacy API (using XML) and modern
APIs (using JSON). API developers can accomplish capabilities that
SOAP-based web services can.

Discoverability: Owing to the fact that the REST style uses mostly
CRUD operations, the API definition is easy to read and understand by

API consumers. The client apps can easily integrate with it, whether it
was originally designed for it or not.

Authorization: REST APIs bring in standard-based verification using the
OAuth protocol as it requires authorization tokens to be sent in the
request header.

Next, let's look at some of the common challenges faced while using
RESTful APIs.

Common challenges

It is a well-known fact that the benefits outweigh the risks associated with
using the REST API style for your enterprise applications. Often, application
developers lack complete knowledge, leading to perceptions that may impair
their ability to develop proper RESTful APIs.

Hence, it is imperative that the challenges are understood properly, to avoid
any confusion about the topic. Some of them are listed as follows:

URI paths and endpoint consistency: All the paths and URIs for the
endpoints must be consistent, as per the standard, but this may be difficult
to manage when new capabilities must be introduced.

API versioning: Having a proper versioning strategy is important while
building REST APIs. Otherwise, any existing integrations may cause
breaking as there may be functional and structural updates for an API
whenever a new version is released.

Payload size: As the standard suggests, a full entity object must be
returned. The overall payload can be high for complex entity types,
leading to low throughput due to an increased response time on the
server.

Limited support for user input: REST uses URL paths for input
parameters, so it is limited by the navigation and paths supported by the
URIs.

Error handling: Owing to the fact that we can use HTTP status codes as
part of our response codes, the error handling mechanism must be robust.
There must be a way to differentiate successful or valid operations with
error states. Client applications must be able to differentiate between the
error status codes. Otherwise, the user experience will be drastically
impacted as users will not know what happened with the request.

API testing: The API testing strategy is sometimes complex because a
certain sequence must be followed while testing the APIs. Since the APIs
are operations over an underlying business system, there must be
provisioning for synthetic transactions so that the database is not loaded
with unnecessary records, since the tests may be run continuously. You
can make use of design patterns such as Template or Proxy for this. API
testing is critical for detecting build breaks due to enhancements, or new
features being rolled out.

Authentication: APIs only support the methods (Basic, OAuth, JSON
Web Tokens, and so on) that are allowed as part of the Authorize header
of the HTTP request.

The points listed here must be thoroughly discussed within the team very
early in the life cycle. This is critical for developing a common understanding
within the team and establishing the list of standards that will be followed.

In the next section, we will review the recommended practices for building a
RESTful API.

Exploring the checklist for building
RESTful APIs
Cloud computing and microservices are almost certain to follow RESTful
API design as a rule for its implementations. The stateless nature of these
APIs allows these services to be redeployed easily, whenever they're needed.

The following tables serve as a design and implementation checklist for all
RESTful API developers:

Model domain actions using HTTP methods: Earlier in this chapter,
you understood that the operations that are supported by a REST API can
be modeled as HTTP operations on a specified resource. Hence, it is a
common practice to enumerate the various actions that will be allowed on
a domain entity, and then map those different HTTP methods to indicate
the operation to be performed on the requested resource, as identified by
the request URI:

Ensure that all the supported features are CRUD in nature: RESTful
APIs typically update any backend database system. Hence, all the
supported operations must be linked to one of the CRUD operations on
the database system. When dealing with complex hierarchical objects or

domain entities, the API operation can execute CRUD on one or more
underlying database objects.

Use the proper HTTP status codes: REST APIs are typically request-
response pairs. Hence, HTTP status codes must be used to denote the
outcome of the action, even if it was a failure.

The most commonly used HTTP codes are as follows:

The following are a few best practices that your development teams must
follow:

Use a document serialized object for HTTP bodies: Typically, the
request body or response output of an API (in JSON or XML format)
must conform to the serialized representation of the business entity
objects. This eliminates the need for additional processing, such as
unwrapping or formats being converted by the client on the response
that's received.

Make use of HTTP headers to serve additional metadata: It is
important to make use of HTTP headers appropriately to contain
additional metadata about the resource under consideration for the API.
This metadata information can be used for a variety of purposes and can
serve as important attributes for intermediary components such as
firewalls.

Some commonly used headers are as follows:

a) Content-Type: This identifies the media type for the entire body.

b) Content-Length: This is the entire body's size in bytes.

c) Last-Modified: This shows the date and time of the last event changed
on the requested resource.

d) Etag: Indicates the response message entity's version. You can read
more about this here: https://www.geeksforgeeks.org/what-is-http-etag/.

e) Cache-Control: This is a caching value that is Time to Live (TTL)-
based (in seconds).

https://www.geeksforgeeks.org/what-is-http-etag/

f) Location: This provides the requested resource's URI.

API documentation: One of the best practices is to document your REST
API with as many details as possible while covering HTTP methods,
URIs, HTTP status codes, and request/response entity schema definitions.
This makes the API easy to use for developers while they're building the
client applications. With the emergence of industry standards such as the
OpenAPI Specification or JSON API, there are a lot of tools that can be
used to create API definitions and documentation. You can make use of
the references provided in the Further reading section to read more about
this.

Authorization policy: Since security is the most important thing for any
API implementation, developers must implement the appropriate checks
for authorization within their API implementation. This can involve both
role-based and attributed-based access policies that must be satisfied
before the API allows the caller to execute the necessary actions. For
example, say the profile of a user can only be updated by the user. Hence,
the API must implement a check to ensure that only the current user can
update their respective profile information.

Faster and optimized response time: REST APIs that are mostly used
for synchronous operations usually have higher response times compared
to asynchronous ones. This is primarily because heavy-duty processing is
happening as part of the same operation context, so the various
dependencies, such as other external API calls, and data conversions and
save, can impact the overall wait period before a response is sent back to
the client. Hence, the right analysis must be done to reduce all
bottlenecks. It is recommended to target faster response times (less than a

second) from the very beginning as well. Ensure that the appropriate
telemetry is in place to capture the response time metric and raise alarms
whenever significant deviations are observed.

Use a URI to handle hierarchical or nested relationships: As the
underlying business domain could be complex, there is a possibility that
the core entity may be associated with multiple other entities, either as a
parent-child relationship or as linked objects. Hence, the URI patterns
must be designed while keeping this under consideration and return the
data for the appropriate relationship level. Sometimes, the URI paths can
be a little complex when iterating through multiple nested relationships.

For example, say the /api/policies/id URI returned the policy resource for
the specified ID. Then, the /api/policies/id/assets URI will return all the
assets that were linked to the respective policy. Thus, URI subpaths can
serve as individual operations on the requested resource.

Consistent naming and formatting guidelines: To keep all your API
interfaces clean and consistent, proper naming and casing techniques
must be followed while naming the various entities and operations. The
standard convention is to make use of plural names for the object in the
URI to serve as the root of the collection.

For example, /api/quotes/, /api/policies/, and /api/claims/ indicate the
respective collection objects. Having a GET on /api/policies/id will get
the policy document for the specified id value.

Sorting, filtering, and pagination: For most enterprise applications, the
REST API endpoints will be dealing with large datasets on the backend.
Hence, operations such as sorting, filtering, and pagination are

important to narrow down the results to a limited set that is of relevance
to the clients. Otherwise, the resultant datasets for listing operations could
be quite huge and complex, thereby impacting the overall performance of
the API operation.

Different query string parameters are used for the purpose of sorting,
filtering, and paging. For example, ?sort="name asc" indicates that we
can apply sorting on the name attribute in descending fashion. Likewise,
the ?publisher="*Packt*" parameter will do a wildcard search and try
to find all the records that contain the word packt in the publisher
attribute. Similarly, parameters such as ?offset=0&limit=10 will retrieve
the top 10 records at start at index 0 for the specified criteria.

You must consider all these requirements as part of the API design to
consistently follow and implement them.

Prefer JSON for the payload: JSON format is widely accepted as an
industry standard for REST APIs. It allows a flexible schema to be used
that can be modified with full backward compatibility support. Adhering
to other standards, such as SOAP XML, can make your interfaces tightly
coupled, which may make them difficult to integrate with. Hence, within
an enterprise context, most of the APIs tend to make use of JSON as the
default standard.

Must include automated API testing: It is a common practice to write
API tests to verify REST interfaces. These tests are easier to write and
simulate using a wide variety of tools. They can also serve as
documentation that indicates how the API endpoints can be invoked from
a variety of languages and platforms.

The tests are also useful for validating whether the API works as expected
post any changes or upgrades.

Now that you have reviewed the important practices that all development
teams must follow while building their REST APIs, let's review the
importance of defining your REST API contracts before the implementation
has started.

Contract-first design for your REST APIs

Contract-first design refers to the technique of identifying the contract
definitions for your REST API. This includes both the interfaces and
operations that are available, along with their respective data types and
response structures.

This originated from the concept of using a WSDL file to define a web
service. For REST APIs, this is documented using other techniques, such as
the OpenAPI Specification. The objective is to describe the operations
supported by the API so that they can be shared with the API consumers for
implementing the integration points.

There are many benefits of using the contract-first approach:

You can implement client integrations in parallel with the API
development.

The contract serves as a baseline for the list of operations that are
supported. The development teams can write client-side unit tests to mock
the operations.

The contracts are agreements between the consumer (client app) and the
provider (API) and are cross-platform-compatible. Development teams
can make use of different languages to build the different components of
the solution.

In the next section, we will explore the OpenAPI Specification, which is
quite popular for constructing the API interface definition file. This file will
act as the contract of the API.

OpenAPI Specification
The OpenAPI Specification (OAS) defines a standard that can be used to
create the interface definition of a RESTful API in a language-agnostic
manner. This allows the consumers of the API, whether they're humans or
computers, to easily decipher the capabilities of the services without
requiring access to source code, documentation, or even inspections of the
network traffic. Owing to its wide acceptance in the community, APIs that
are defined properly using the specification constructs will be readily
available for use by the developers planning to integrate with the API.

There are a variety of developer productivity tools that can parse the
OpenAPI definition files, as well as display the API specification in a
graphical manner that is easy to understand and follow. There are tools that
can generate stubs or proxy classes using these definition files or even in API
testing, using mocks.

You can read more about the OpenAPI Specification at
https://spec.openapis.org/oas/v3.1.0.

https://spec.openapis.org/oas/v3.1.0

OpenAPI definition fi le format

OpenAPI definition files, also popularly known as swagger files, for a
RESTful API can be constructed in either JSON or YAML format. The
swagger file is used to define the entire API. This includes information about
the endpoints, the operations that are supported, how parameters can be
passed, error schemas, authorization methods, and more.

At the time of writing, v3.0 of the specification is in use. The structure of the
file is depicted in the following diagram:

Figure 5.3 – OpenAPI v3.0 file structure

Let's explore how we can quickly create the API definition file for one of the
APIs, namely the Policy API for the Packt Insurance Inc. solution that we
discussed in the previous chapters.

You can construct the API definition file in just seven steps. They are as
follows:

1. Capture the basic information about the API:

openapi: '3.0.2'

info:

 title: Policy API

 description: API endpoint for the Policy subsystem

 version: '1.0'

2. Specify the server URL hosting the API service:

servers:

 - url: https://api.packt.com/v1

3. Mention the security requirements that must be adhered to by consumers:

security:

 - api_auth:

 - write:policy

 - read:policy

4. Specify any tags that may be useful for the API discovery:

tags:

 - name: Policy API

5. Give reference to externalDocs for additional information about the API:

externalDocs:

 url: https://api-docs.packt.com/apis/policyapis

 description: developer documentation of the policy api

6. Define the operations and paths supported by the API:

paths:

 /policies:

 post:

 tags:

 - Create Policy

 summary: Create a Policy

 description: creates a policy based on the

 information passed.

 operation: createpolicy

 request Body:

 description: Policy Document Object

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/PolicyDocument"

 responses:

 200:

 description: id of the policy record

 content:

 application/text:

 schema:

 type: string

 get:

 tags:

 - Get Policies

 summary: Get the collection of Policies.

 description: returns a list of policies in the

 system.

 operationId: getpolicy

 parameters:

 - name: limit

 in: query

 description: 'count of records to be returned'

 required: false

 schema:

 type: integer

 default: 100

 - name: offset

 in: query

 description: 'starting offset for the query.'

 required: false

 schema:

 type: integer

 default: 0

 responses:

 200:

 description: Collection of Policies

 content:

 application/json:

 schema:

 $ref: "#/components/schemas/Policies"

 /policies/{id}:

 parameters:

 - name: id

 in: path

 description: 'Id of the policy record'

 required: true

 schema:

 type: integer

 get:

 tags:

 - Policy by Id

 summary: Get the Policy by Id

 description: returns the specified policy.

 operationId: getpolicybyid

 responses:

 200:

 description: Policy Document

 content:

 application/json:

 schema:

 $ref:

 "#/components/schemas/PolicyDocument"

 402:

 description: Unauthorized access

 content:

 application/text:

 schema:

 type: string

 example: User is not allowed to access

 this policy.

 404:

 description: Not found.

 content:

 application/text:

 schema:

 type: string

 example: The specified policy does not

 exist.

7. Define the schema of the various data components used by the API:

components:

 schemas:

 Policies:

 type: array

 items:

 properties:

 PolicyDocument:

 type: object

 properties:

 policyId:

 type: string

 example: "POL-COMP-1234567-I"

 dateissued:

 type: string

 PolicyDocument:

 type: object

 properties:

 policyId:

 type: string

 example: "POL-COMP-1234567-I"

 customerId:

 type: string

 example: "IND123459873457CR"

 dateissued:

 type: string

 securitySchemes:

 name:

 type: oauth2

 flows:

 authorizationCode:

 authorizationUrl:

 'https://login.microsoftonline.com/<tenant-

 id>/oauth2/v2.0/token'

 tokenUrl:

 'https://login.microsoftonline.com/<tenant-

 id>/oauth2/v2.0/token'

 scopes:

 read:policy: read

 write:policy: write

8. With that, you've seen how easy it is to create API definition files.

In the next section, we will look at how easy it is to visualize a swagger
definition file using Visual Studio Code (VSCode).

Visualizing the API definition fi le using the
Swagger extension in VSCode

Various tools are available for authoring OpenAPI Specification files. Here,
we have made use of Visual Studio Code, along with OpenAPI Editing and
Swagger viewer plugins, to construct and verify the structure of the file.

The following screenshot shows what this looks like overall:

Figure 5.4 – Policy API Swagger definition file

A properly structured and well-documented RESTful API is a delight for all
the consumers of the API. It is of the utmost importance for all public APIs.
Hence, sufficient attention and time must be allocated to construct the
interface definition in a professional manner.

Summary
In this chapter, you reviewed how RESTful APIs are quite easy to use and
adapt. You also studied the constraints and limitations that must be kept in
mind while designing APIs for your enterprise.

As REST APIs are becoming the new web standard, it is important that you
delve deep into the concepts of REST by making use of the links provided in
the Further reading section. It takes a few iterations and experiments to fully
understand this style before you can put it to use.

By incorporating the best practices, you can create an API that is easily
understood and consistent with the intended purpose. The developer
community can take advantage of API offerings with a reduced learning
curve since, overall, the RESTful style is the most convenient and easier one
to integrate with.

Coupled with additional capabilities such as self-service API enablement
through API Discovery Portals, enterprises can tap into the enormous
potential and opportunities of the marketplace.

In the next chapter, we will look at some of the best practices for designing
and implementing API-centric solutions.

Further reading
Hypertext Transfer Protocol:
https://www.w3.org/Protocols/rfc2616/rfc2616.html

Microsoft API Building Guidelines: https://github.com/Microsoft/api-
guidelines/blob/vNext/Guidelines.md

Definition of the REST Standard:
https://en.wikipedia.org/wiki/Representational_state_transfer

REST API Design Rule Book: https://www.oreilly.com/library/view/rest-
api-design/9781449317904/

Tutorial on the REST API: https://restfulapi.net/

REST API Design Guidelines:
https://searchapparchitecture.techtarget.com/tip/16-REST-API-design-
best-practices-and-guidelines

Open API Detailed Specification: https://www.openapis.org/

Open API Specification Examples: https://github.com/OAI/OpenAPI-
Specification

JSON API Specification: https://jsonapi.org/

https://www.w3.org/Protocols/rfc2616/rfc2616.html
https://github.com/Microsoft/api-guidelines/blob/vNext/Guidelines.md
https://en.wikipedia.org/wiki/Representational_state_transfer
https://www.oreilly.com/library/view/rest-api-design/9781449317904/
https://restfulapi.net/
https://searchapparchitecture.techtarget.com/tip/16-REST-API-design-best-practices-and-guidelines
https://www.openapis.org/
https://github.com/OAI/OpenAPI-Specification
https://jsonapi.org/

Chapter 6: API Design Practices
APIs are a company's greatest digital asset. Modern applications rely heavily
on these backend services to realize their amazing digital experiences.
Successful API platforms can capture customers, while the bad ones will be a
liability, resulting in a lot of support calls. Hence, adhering to good design
and implementation practices is critical to ensuring you have a quality
product. Public APIs carry the inherent risk of impacting brand reputation if
not done right.

A good API is one that is easy to understand, simple to use, easy to maintain
and extend, and provides output as per the expectation of the audience.
Careful planning and a well-thought-through design and implementation
approach that considers all the requirements are strongly recommended
before you write any code. Also, development practices such as test-driven
development may be useful in detecting any issues at the early stages.

The purpose of this chapter is to focus on the important aspects that must be
considered as part of designing and implementing API services.

In this chapter, we are going to cover the following main topics:

Understanding API design considerations

Exploring recommended practices

Implementing an API service using design patterns

Developer toolbox

TIP – SEQUENCE DIAGRAMS

Sequence diagrams are very useful in depicting request-response flows. It aids in
capturing all the subsystems that will be involved as part of the complete business
operation. For most of your critical flows, performing analysis using sequence diagrams
will aid in discovering dependencies, performance bottlenecks, and resource constraints.
Furthermore, there are tools such as PlantUML (https://plantuml.com/sequence-diagram)
that allow you to create and maintain sequence diagrams, similar to code, that can be
checked into your GitHub repository alongside the API module code.

Understanding API design considerations
The API design process involves analyzing the business and technical
requirements against a set of predefined criteria or constraints, and then
arriving at an optimal design to achieve the expected results. These criteria,
also known as design considerations, will be covered in the following
subsections.

Coupling

Coupling refers to the degree of interdependency between the components or
modules of a software system. A good design is one that has low coupling. In
the context of API-led architectures, there will be multiple APIs and
underlying subsystems involved in the solution. Low coupling will allow you
to change or upgrade the components independently, without this impacting
any other components in the system.

By focusing on building the components as atomic, self-contained parts, you
can get optimal flexibility and improve your reusability. You can change or
replace the components quite easily.

https://plantuml.com/sequence-diagram

You can read more about the different types of coupling here:
https://www.geeksforgeeks.org/software-engineering-coupling-and-
cohesion/.

Chattiness

Chattiness refers to the number of calls the API consumer is required to
make to get the necessary information. Chattiness must be avoided in your
API design. Otherwise, it will lead to very poor end user experience. Multiple
API calls consume both network bandwidth and increase the overall
transaction time for any scenario.

API operations must be designed in a way that they provide the information
or data that's been requested in one go. Transaction modeling techniques that
use sequence diagrams can be adopted to identify whether there is chattiness
in the workflow.

Chattiness is also considered to be a performance anti-pattern. Refer to this
article to find out more: https://docs.microsoft.com/en-
us/azure/architecture/antipatterns/chatty-io/.

Client complexity

The clients of an API refers to the variety of applications that connect and
use the API to complete different business workflows and scenarios. All
modern API interfaces must be designed to support a variety of clients,
including devices, mobile phones, web browsers, desktop apps, and even
service applications.

https://www.geeksforgeeks.org/software-engineering-coupling-and-cohesion/
https://docs.microsoft.com/en-us/azure/architecture/antipatterns/chatty-io/

It must be noted that different constraints may apply as to how the clients
behave and process API requests. For example, let's say a UI screen must
display the list of orders that have been received. In a mobile app, only a
subset of information may be necessary compared to a web client on a PC
that has a larger form factor. So, it would be recommended to build APIs in
such a fashion that the payload that's delivered is appropriate for the client.

This approach adds a bit of complexity to API design. However, the end
result is more performant client apps.

Cognitive complexity

Cognitive complexity is a measure of the number of processes that are
required to complete a specific task. In the context of an API operation, it
refers to the number of functional blocks that must be traversed when the API
is invoked.

Cognitive complexity impacts both the performance as well as the
maintainability of an API. The more code or logic that you have in your API,
the more difficult it will be to unit test all the paths, so any upgrades or
changes are risky. There are tools such as SonarQube that can measure the
cognitive complexity of your code.

In general, cognitive complexity must be low for a good API design. If there
are multiple process steps, you should remodel your business workflow to
avoid incurring high cognitive complexity in your components.

Caching

Caching refers to the ability to store copies of data that are not frequently
updated using one of the following options:

In memory, within the API layer itself

In a low latency distributed store such as Redis Cache

Caching is frequently used for all static or reference data that does not change
frequently. You can also cache transaction data, but that requires careful
thinking. Cache invalidation technique must be deployed so that users don't
receive stale information. Caching hugely improves the overall response time
for the API.

For an API platform, caching helps with the following:

Reducing the network traffic as the API doesn't always need to call other
services or the database

Improving the availability of the API

Reducing server response time and latency

Increasing throughput and scalability

Caching strategies must be carefully planned, especially when dealing with
transactional data, as it impacts the freshness of data. Cache retention and
purging strategies must also be planned to remove data from the cache before
it becomes stale.

You can review the cache aside pattern that you plan to incorporate in your
cloud APIs here: https://docs.microsoft.com/en-
us/azure/architecture/patterns/cache-aside.

Response caching

https://docs.microsoft.com/en-us/azure/architecture/patterns/cache-aside

This refers to the technique of storing copies of the response output of the
API call either on the server, the browser, or the client making the API call.
This allows for faster access to the data, thereby improving the overall
responsiveness of the application.

The response data that's obtained from the endpoint is stored in the local
cache with a specified a time to live (TTL), also known as the expiration
window. For example, if the TTL is set to 300 seconds, then the client will
make use of the data from the cache until the cache data becomes invalidated.

You can read more about this here: https://restfulapi.net/caching/.

Discoverabil ity

Discoverability refers to the ease with which information about the list of
APIs, their corresponding operations, and usage techniques can be accessed.
This is only possible when you create sufficient documentation about the
interface and data contracts. You should make use of the OpenAPI
Specification to document your APIs. These specification files (in yaml/json
format) are important to API management tools such as Azure API
Management so that they are accessible to the developers consuming the API.

Note that API documentation is of paramount importance, especially for all
public APIs. The adoption of the API platform is largely dependent on how
easily developers can complete their integrations. Hence, you must provide as
much information as possible in the definition files to avoid any ambiguity in
understanding.

https://restfulapi.net/caching/

Versioning

APIs typically undergo multiple revisions as part of the change management
cycles. Hence, it is imperative that you adopt a proper versioning strategy to
distinctly identify what changed in which version. Furthermore, the changes
must be backward compatible to ensure that any existing client integrations
are not impacted.

Two types of changes can occur within an API; namely, breaking changes
and non-breaking changes. You must create an upward major version when
introducing breaking changes in your API.

So, what is a breaking change? You can consider the following scenarios as
breaking changes:

A change in the format (schema) of the response object; for example,
adding new fields or elements, removing elements, changing the data
types of elements, and so on

A change in the format for request and response object types; for
example, changing the definition of the data objects, adding or removing
parameters expected by the API, and so on

Deprecating or deleting the existing operations of the API

Non-breaking changes, such as adding a new endpoint (operations) to the
API, can be treated as enhancements. We advise that you increment the major
version for such cases as well, to efficiently track the revisions of your API.

Implementing versioning

API versioning can be implemented using one of the following techniques:

URI path based: Appending the version information in the URI paths is
the most straightforward method of API versioning.

For example, the following two URLs represent separate versions of the
quoting service API:

https://api.packinsurance.com/quotingservice/v1

https://api.packinsurance.com/quotingservice/v2

You can append the versioning information in different ways when you're
using a URI path-based approach.

Use a query string parameter: By using a query string parameter (for
example, api-version), you can differentiate between the versions. This is
a common technique that's used in REST APIs as switching versions is
easier than changing the actual URI paths.

For example, the following two URLs represent separate versions of the
quoting service API:

https://api.packinsurance.com/quotingservice/getquote?api-

version=1.0

https://api.packinsurance.com/quotingservice/getquote?api-

version=2.0

Versioning using the Accept header: Sometimes, it is preferred to keep
the URIs constant by differentiating between the versions using the
information that's been sent by the client in the Accept HTTP header.
This approach adds a little bit of complexity to your API controllers as
you need to manage the additional processing logic of reading the header
value and determining which content to send. Furthermore, the clients

must know what value to send as part of the header while invoking the
API.

For example, the following header values indicate the different response
outputs:

Accept: application/quote.v1+json

Accept: application/quote+json;version=2.0

Use a custom request header: An alternative to using the Accept header
is to make use of a custom header (for example, accept-version or
something similar) to indicate the content version that's been requested.

For example, the following header values indicate different response
outputs:

accept-version:v1

accept-version:v2

Although the technique of using custom headers adds flexibility and is
simple to use, it's usually less preferred over the other approaches
suggested here.

NOTE
For RESTful APIs, either the URI path-based or query string approaches are more
preferred for API versioning over other approaches.

In the next section, we will review some of the recommended design
practices that must be considered when building API-centric solutions.

Exploring recommended practices

The following list of recommended practices is a compilation of the good
habits that development teams must embrace to be successful in their
implementations. You may use this as a checklist for the purpose of training
your project teams, or while conducting technical reviews. However, note
that this list is not meant to serve as comprehensive guidance. There may be
additional practices that you wish to consider based on your experience and
research on this subject.

Design should adhere to the SOLID
principles

Introduced in 2000 by Michael Feathers, and subsequently popularized by
Robert C Martin, the SOLID principles are a set of five design principles that
play a very important role in object-oriented design. These principles help
create robust, scalable, and maintainable software architectures.

The term SOLID is an acronym that stands for the following:

S: Single Responsibility Principle (SRP)

O: Open-Closed Principle (OCP)

L: Liskov Substitute Principle (LSP)

I: Interface Segregation Principle (ISP)

D: Dependency Inversion Principle (ISP)

You can read more about the SOLID principles here:
https://www.geeksforgeeks.org/solid-principle-in-programming-understand-
with-real-life-examples/.

https://www.geeksforgeeks.org/solid-principle-in-programming-understand-with-real-life-examples/

You can download and read this whitepaper on how to use the Single
Responsibility Principle for your cloud architectures in Azure here:
https://azure.microsoft.com/en-us/resources/cloud-solid-cloud-architecture-
and-the-single-responsibility-principle/en-us/.

NOTE
It is recommended that you evaluate your component designs by applying these principles to
identify improvement areas. It requires a little bit of practice and discipline to get oriented in
the right way before you can exploit the benefits offered by applying the five design principles.

The key benefits of using the SOLID principles in your design can be
summarized as follows:

Modular and loosely coupled services

Highly testable components

Maintainable and easily extendable design

Now, let's look at the design in terms of flexibility.

Design should be flexible to change

Your API designs should not be rigid or static. They should have the
flexibility to change as the requirements change. It is suggested that you
make use of strategies that allow more designs to be altered without
significant maintenance costs.

Use the Decision Analysis and Resolution
technique

https://azure.microsoft.com/en-us/resources/cloud-solid-cloud-architecture-and-the-single-responsibility-principle/en-us/

Decision Analysis and Resolution (DAR), which originated as part of the
CMMI process areas, is a very useful technique for recording important
design decisions. Basically, DAR is a formal evaluation process in which you
compare multiple viable alternatives against a predefined criterion. DAR
provides a structure that ensures that any design decisions are scrutinized
using a ranking model before a choice is made.

You can read more about DAR here: https://www.software-quality-
assurance.org/cmmi-decision-analysis-and-resolution.html.

Often, technical teams tend to go with their past learnings, instead of making
use of any recent advancements in technology. Using a DAR kind of
approach is useful in broadening your thought processes when it comes to
selecting the best possible choice.

Let's illustrate this with an example. When it comes to building
microservices, there are multiple choices for the compute plane on Azure.
This ranges from using App Service, to Kubernetes, and so on.

For simplicity, we will only consider five criteria and use a scale of 0 to 3 to
indicate the advantage of using the respective service:

https://www.software-quality-assurance.org/cmmi-decision-analysis-and-resolution.html

Figure 6.1 – Template for the Decision Analysis and Resolution technique

Thus, we can see that, as per the analysis we did previously, Azure
Kubernetes Service appears to be the best choice.

A WORD OF CAUTION!

The output of DAR analysis is heavily influenced by the factors that are used for evaluation,
the weights that are attached, and the preference rating that's applied. Hence, due diligence
must be followed to avoid skewing the responses. It is better to provide justification using pros
and cons analysis as well, to indicate why any particular choice is better compared to the
other for any given given criteria.

DAR techniques are useful for conveying the basis of making any decisions,
especially when you're presenting to a technical board during
architecture/design review meetings. However, DAR should only be used for
major design decisions, to avoid it becoming a bottleneck or churning out
technical designs.

Produce documentation as per industry
standards

With the emergence of public APIs driving innovation in the marketplace,
there has been increased impetus on properly documenting all your API
assets. API documentation describes the technical content of the API and
how to integrate with it. Users and developers refer to this information to
understand the products and services that are available. Hence, it is
imperative that the content is produced in a professional manner to improve
its adoption and usage.

Traditionally, developers don't pay much attention to documentation.
However, this approach will not work anymore. API documentation must be
treated like any other work product that must be produced with quality. Good
API documentation is a piece of art. It should be consistent with the industry
standards and must be treated as an enabler for your API platform.

Read this article to understand more about the importance of API
documentation: https://swagger.io/blog/api-documentation/what-is-api-
documentation-and-why-it-matters/.

Secure by design

We studied API security considerations from an architecture perspective in
Chapter 4, Assuring the Quality of the API Service (or Product). Hence, in
this section, only the key points that apply to API design have been listed:

Implement authorization:

a) Protect HTTP methods: Each method or operation of the API must be
protected appropriately, as per the authorization requirements.

b) Whitelist allowable methods: Within your API, operations protect the
code flow by validating the HTTP verbs that are used to access the API.
Return error codes if the supported verbs are not part of the request to
prevent malicious access.

c) Protect privileged actions and sensitive resource collection: Apply role-
based and attribute-based authorization checks to follow the principle of
least privilege.

d) Protect against cross-site request forgery (CSRF) (CSRF) Implement
strategies to incorporate OWASP checks to prevent CSRF attacks.

Input validation:

a) URL validation: Ensure that all the possible inputs to your HTTP
request, including URLs, query parameters, headers, and so on, have been

https://swagger.io/blog/api-documentation/what-is-api-documentation-and-why-it-matters/

validated.

b) Validate incoming content types: Validate your incoming content types
to ensure that clients only send valid content.

c) Validate response types: Validate the data format in which the response
that is sent to the client.

d) XML input validation as applicable: Validate and securely parse any
incoming XML data files as they can be susceptible to XML-based
attacks.

Output encoding:

a) Security headers: Add the necessary headers while sending the
response to the client so that the client (for example, the browser) can
interpret the resource correctly.

b) JSON/XML encoding: Use proper encoders and validators when
working with JSON and XML data.

Cryptography:

a) Data in transit: Mandate the use of TLS for communication.

b) Data in storage: When handling sensitive data, ensure that it is
encrypted using modern and secure cryptography techniques.

c) Message integrity: Make use of OAuth tokens in the request header to
ensure the integrity of the transmission.

HTTP status codes: Follow the standard conventions while defining the
response code for your APIs. This is critical while building REST-type
APIs.

Security is of paramount importance in any solution. The points listed here
serve as a basic checklist that must be followed at a minimum. Based on your
IT practices and their maturity, additional cyber security-related design
guidelines may apply to your specific implementations.

Optimized for response time

We must design the components or parts that make up the API so that the
response time is optimal. In Chapter 4, Assuring the Quality of the API
Service (or Product), we studied the concept of performance modeling,
which is used to model the business flows and their expected performance, as
measured through the response time. The response time of any API is
impacted when under load. Hence, while designing an API, you must conduct
analysis of the request flow path to identify the potential bottlenecks and then
adjust your design to either eliminate these bottlenecks or optimize the
internal calls.

Let's explain this with an example. Here, we have a client (say, a mobile app)
that uses a CRUD API (microservice) hosted in the Azure cloud for various
operations. The call flow from the client through the various components of
the API is shown here:

Figure 6.2 – Latency across various hops during an API operation

As we can see, there are various factors that contribute to the overall latency
of an API operation that impact the client-side and server-side response
times. If we analyze the request call flow, we will see a few things that will
impact the overall client-side response time:

L1 is impacted by the geolocation variance between the client and the
firewall. For example, for services hosted in North America, users in
Europe may experience some increased network latency compared to
users accessing the API from North America.

L2 is typically impacted by the scale of the firewall and gateway services.
These are mostly pass-through shared services and should be designed for
various load expectations.

Within the microservice block, Service C acts as the data access layer
(DAL). Hence, the scale and latency of C (L4) will have an impact on the
API response metric. It must be analyzed whetherit benefits from
referencing the DAL as a shared library instead of hosting it as a separate
microservice. Note that any out-of-process calls will add to the overall
throughput and latency.

The database latency (L5) will have an additional impact on the overall
response time. Hence, all the queries and transactions must perform
faster.

Thus, by analyzing the various latency factors, the design can be adjusted so
that an optimal API response time is achieved.

API testing

The goal of API testing, which can be achieved through manual or automated
tests, is centered around determining whether the API meets the expectations
of functionality, reliability, performance, and security. Project teams should
focus on automating the API tests. This investment pays off in the long term.
These API tests can be integrated as part of the CI/CD processes that verify
the quality of the changes being deployed.

Testing types

Let's understand this by reviewing the important types of API tests that can
be implemented:

Figure 6.3 – API testing categorization

Each of these categories will be explained in the following subsections.

Unit testing

This the most common type of testing that happens on any software solution.
Basically, the developer writes automated tests to verify the functionality of

the unit of code (typically, a function or a class) that they have written for the
solution.

The objective of unit testing is to verify the different code paths for their
completeness and to detect any logic-related errors. Unit tests must be
maintained as requirements change. Hence, investing in unit testing is
ongoing as more code modules are implemented. However, these tests are
extremely useful for detecting any build breaks due to bug fixes or
enhancements being rolled out.

Functional or integration testing

Functional testing, also known as integration testing, aims to verify the
business functionality or behavior that's implemented by the API. Functional
testing focuses on verifying the different functions and their associated
business rules, including data validation.

Functional testing is accomplished by specifying a set of input parameters for
the function, as per the interface definition, and then checking the response
that's obtained against the expected result. This is called integration testing as
it requires the API to be fully deployed in an environment with all the other
working components, including active connections to the database.

Functional testing is extremely useful for verifying the quality of the solution.
Teams that have high agility in their release cycles invest heavily in writing
automated functional tests that are integrated with the CI/CD pipelines.
Basically, every code change can be deployed to an integration testing
environment, and then the automated suite of applicable functional tests can
be run to verify whether there are any regression issues. Otherwise, the build

can be promoted to production. This drastically reduces the verification cycle
time, thereby improving the cycle time of the releases.

Load testing

The goal of load testing is to verify the scalability of the API when it's subject
to a significant number of concurrent requests (for example, 1K/10K/100K
requests) hitting the API. Load testing is conducted to understand the
performance of the API under normal and peak load situations. The test
results are compared against the predicted performance models to identify
issues that require further API tuning.

Security testing

Security testing is conducted as part of the API life cycle to verify whether
the software meets the security requirements. Security testing may also
involve code inspections to verify the usage of encryption/decryption
techniques, validate authentication and authorization checks, and check
whether all the components follow secure by design principles. Security
testing also involves static analysis involving various code analyzers to detect
OWASP and other design-related issues.

Penetration testing

Penetration testing is an extension of security testing, which is conducted to
detect whether any security vulnerabilities exist in the solution that can be
easily exploited by an attacker. These tests are performed in such a way that
they mimic the scenario of a hacker trying to force access to the system by

exploiting a loophole. Considering the increased rate of cyber security
attacks, these tests have become very important in preventing any denial-of-
service attacks.

Penetration testing often requires specialized knowledge and tools. Hence,
project teams must identify this as a crucial dependency during their planning
cycle.

Fuzzy testing

Fuzzy testing involves passing a lot of random data to the API and verifying
whether it can gracefully handle erroneous inputs. Through fuzzy testing, you
can verify whether the API is handling the exception flows properly.

Runtime error detection

These types of tests involve testing the runtime operation of the API. They
are useful in detecting error conditions, resource leaks, unnecessary locks,
and other monitoring-related events. They are useful for optimizing the code
of the API.

Validation testing

Validation testing is done at the end of the development life cycle. Its core
objective is to verify the following:

Product: Whether the API meets the requirements of the product

Behavior: Whether the API is operating correctly with the various
datasets and produces the expected results

Efficiency: Whether the API is functioning in the most optimized way

The answers to these questions help the project teams identify whether the
API can accomplish the business objectives against the established standards
and guidelines.

Benefits of API testing

Having the ability to test and verify your services independently, without
actual consumers, significantly improves the chances of detecting any faults
that may impact the quality of the service before they are reported by users.
This provides greater predictability and confidence to the team that is
building and managing the API services.

A few important benefits of API testing are as follows:

Detect integration issues/bugs early in the life cycle, without requiring the
actual UI application to be fully developed.

Functionality breaks due to fixes or enhancements being introduced can
be detected easily.

Security threats and vulnerabilities are detected and mitigated.

Ensure adherence to SLOs/SLAs, as per the commitment of the service
provider.

Improve the monitoring, auditing, and alerting capabilities that are
implemented in the solution.

Reduce technical debt and ensure the quality of the product.

Size and granularity

When developing API interfaces, project teams are often challenged with the
decision to identify the right level of granularity. While DDD techniques do
allow you to identify the different microservices that are required, clarity may
be lacking regarding the definitions for the actual physical services that must
be developed.

When it comes to designing the actual physical API interfaces or controllers,
there are five options to choose from: monoliths, macroservices,
miniservices, microservices, and nanoservices (or functions). Let's have a
quick look at each:

Monoliths: In this approach, while the code may be modular, the entire
business functionality will be contained in a single physical deployment
unit. Most legacy systems follow this kind of design and are difficult to
upgrade and maintain.

Macroservices: In this approach, there may be multiple service domains
or business processes that are interdependent on each other, and they will
be contained within a single service. There is a thin line of difference
between monoliths and macroservices, and it's up to the discipline of the
development teams that the right level of granularity is ensured.

Miniservices: In this approach, the code for a single business domain will
be contained within a single service. Typically, they tend to grow as new
functionality gets introduced.

Microservices: This is the most preferred choice for modern cloud-based
development. Here, any specific business domain is broken down into
logical units of abstraction that can be independently deployed and
scaled.

Nanoservices or functions: This is another extreme end of the spectrum,
where every individual function can be independently deployed and
scaled. This approach finds usage in some use cases such as large event
processing, IoT, and big data pipelines.

BUSINESS MICROSERVICES VERSUS API
SERVICES
A business microservice is a logical grouping of one or many physical API services. For
example, in the previous chapters, for the Packt Insurance scenario, we depicted how the
Quote microservice is comprised of two to three separate physical services. For
simplicity, the terms microservice and API service have been used interchangeably in this
chapter. They both mean the same thing; that is, a single physical deployable service.

Too much granularity adds operations and management overhead, whereas
large services are difficult to maintain and upgrade. Hence, you must apply
the following key considerations to arrive at the right level of service
granularity:

Release agility expected.

Separate hosting and scaling to meet variable usage loads.

Use different API styles for different purposes.

Operational cost.

Service granularity is the most important concern for all application
developers. Hence, defaulting to coarser-grained (for example, microservices)
is more preferred for all scenarios, followed by identifying a limited set of
scenarios that will benefit from finer-grained (for example, nanoservices)
services.

Content negotiation

Content negotiation refers to the ability of the API to provide different
representations of a resource, depending on what the client has requested. For
example, a data object can be represented in XML, JSON, or even plain text.
So, when using the content negotiation feature, the API can return the same
data but in different formats.

Content negotiation can be server-driven or agent-driven:

Server-driven: The decision to identify the best representation of content
is made by the server by using an algorithm or logic.

Agent-driven: The client of the API explicitly asks on the format that it
expects the response to be provided in. To achieve this, the client uses
either an HTTP request header (for example, Content-Type) or calls a
different resource URI to specify the resource format. This is relatively
simple to implement on the server side.

You can read more about content negotiation here:
https://restfulapi.net/content-negotiation/.

Prefer stateless over stateful services

API services can be both stateful as well as stateless. However, stateless
services are preferred over stateful due to their obvious benefits. First, let's
understand the difference between the two:

Stateful services: This service stores or maintains state information on
the server it runs. Basically, the state of the data is persisted either in

https://restfulapi.net/content-negotiation/

memory or within a caching tier that can be externalized. The stateful
service still may have a backend database but for the clients, most of the
information is served from the cache. Stateful services are useful in
certain scenarios. Since the data is close to the compute, it speeds up
requests being processed.

Stateless services: This type of service does not store any data on the
server. It processes all incoming requests by interacting directly with the
backend database. It can externalize information that's stored in the cache
stores of the client. For example, when the API is invoked by a web
browser, the data can be saved to the local cache storage of the browser.

Stateless services are beneficial due to the following reasons:

Easy to scale to meet the load and availability requirements.

Simpler to revise and upgrade as there is no fear of any data getting lost.

Data is always in a consistent state as it is stored in the database.

User-digestible response codes and
messages

One common mistake all developers make is assuming that API consumers
are tech-savvy people who will understand the technical jargon easily.
However, this is not always true, so the response codes and messages that are
returned by the API must be easy to understand and follow certain
predefined, commonly used standards.

For example, when an API consumer invokes an API passing invalid data,
then the API must return a user-friendly message stating what the problem
was with the data. This will make it meaningful for the developers so that
they take action to fix the data payload in order to successfully complete the
operation.

API response codes and messages must be properly documented as part of
the API definition and periodically revised to improve the experience of the
users.

Using cloud design patterns

Azure Architecture Center has published a collection of cloud design patterns
that development teams must plan to incorporate in their designs.

You can review the full catalog of cloud design patterns here:
https://docs.microsoft.com/en-us/azure/architecture/patterns/.

These patterns are mostly structural and behavioral patterns that address
common challenges for cloud-based applications.

Projects teams must prioritize and plan to use one or more patterns for their
respective services as they have been tried and tested in various customer
scenarios.

In the next few sections, we will cover some of the modern implementation
patterns that are used while building microservice-based API solutions.

Implementing an API service using design
patterns

https://docs.microsoft.com/en-us/azure/architecture/patterns/

It is recommended that you make use of the microservices architecture and its
associated design patterns to implement cloud-based enterprise API-centric
solutions. You can find a rich catalog of such design patterns here:
https://microservices.io/.

In this section, we will cover the most used structural and behavioral patterns,
study their pros and cons, and share some usage scenarios as well. All the
finer, more granular details of each pattern will not be covered in this book.
You can explore the Further reading section to learn more about the
respective patterns. These patterns target commonly faced design challenges
and can be easily reused in your respective scenarios. Having a good grasp of
the usage of these patterns is essential to building great API architectures.

GOOD READ
There are a lot of reference materials available on microservices that offer insightful and
prescriptive guidance on this topic. One such useful reference is eShop on Containers, which
is available at https://github.com/dotnet-architecture/eShopOnContainers. You will find a lot of
reference code and other ideas for your microservices design strategies here.

In the following sections, we will review the five most commonly used
implementation patterns.

Data-driven CRUD API

A data-driven CRUD API is the most simplistic representation of a
microservice. It is commonly used in scenarios wherein there is less
complexity in the way the domain model entity objects are accessed or
updated. The following diagram shows what a simple CRUD API looks like:

https://microservices.io/
https://github.com/dotnet-architecture/eShopOnContainers

Figure 6.4 – A simple CRUD API

This pattern behaves like a layered architecture, but all the code components
are deployed together in a single microservice. Also, there is no business
layer in this type of API.

A data transfer object (DTO) may be used as the published data model for
exchanging information with the consumers of this API. A CRUD API may
implement caching strategies to improve the response time for the read
operations.

Let's study the pros and cons and typical usage scenarios of a data-driven
CRUD API pattern. The key benefits of this pattern are as follows:

Used for building data services that do not have any business logic

Low complexity due to its simple design

A few of the constraints while using this pattern are as follows:

Requires data caching strategies to improve the performance of the read
operations.

The complexity of the implementation requires highly skilled developers.

Used only for fine-grained services with simple entity schemas.

Some common uses of this pattern are as follows:

For implementing reference or master data services. These APIs are
typically lightweight and involve a limited set of entities.

Shared data services that will be accessed by other microservices in the
solution.

Command and Query Responsibil ity
Segregation (CQRS)

Command and Query Responsibility Segregation (CQRS) is a software
design pattern that separates the code or components into two parts: one that
reads the state and another that modifies the state.

In other words, the application provides APIs that do the following:

Accept command messages to update the data.

Provide separate query interfaces to read the persisted data.

You can read more about the CQRS pattern here:
https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs.

A very simplified version of the CQRS pattern, with separate command and
query interfaces, is depicted here:

https://docs.microsoft.com/en-us/azure/architecture/patterns/cqrs

Figure 6.5 – CQRS pattern using separate API services

The most common usage of CQRS is for implementing domain-driven design
behaviors through APIs. Using this approach, the Read operations can be
isolated from the Create, Update, and Delete operations. The code
components can be logically separated within a single API, or even
physically by creating separate API endpoints. This approach is extremely
useful in scenarios wherein the volume of read requests may be significantly
higher than write requests or vice versa. Physical separation allows the
components to be scaled independently of each other.

NOTE
CQRS is often used in conjunction with the Event Sourcing pattern. In this case, the write
database can implement a message store that receives the incoming command messages
that are to be processed.

Let's study the pros and cons and typical usage scenarios of the CQRS
pattern.

The key benefits of this pattern are as follows:

Commonly used for Domain Driven Design (DDD) behaviors.

Allows read and write operations to be scaled independently from each
other.

Used in scenarios that require high availability of data (read operations).

Good adherence to REST principles.

A few of the constraints while using this pattern are as follows:

Requires data consistency to be handled between write and read stores.

There may be a learning curve for project teams not familiar with DDD
techniques.

The complexity of the implementation requires highly skilled developers.

Some common uses of this pattern are as as follows:

For building highly scalable microservices

For implementing DDD behaviors

Event Store API (Event Sourcing)

The Event Store API, also known as the Event Sourcing pattern, is used in
asynchronous event-based messaging scenarios. Here, the state changes that
are made to an entity are represented as events that are saved to a transient
event store, instead of them being used to directly update the actual entity.
The actual state of the entity is derived by sequentially processing all the
corresponding stored events on that entity.

The following diagram is a representation of the Event Store API:

Figure 6.6 – Event Store API

The Event Store pattern is often used in conjunction with CQRS. This pattern
provides very high throughput for write operations.

You can read more about this here: https://docs.microsoft.com/en-
us/azure/architecture/patterns/event-sourcing.

Let's study the pros and cons and typical usage scenarios of the Event Store
API pattern.

The key benefits of this pattern are as follows:

Used for building highly scalable, loosely coupled systems.

https://docs.microsoft.com/en-us/azure/architecture/patterns/event-sourcing

Each state change is considered an atomic transaction.

Events are stored in a chronological manner, making it easier to track
their history.

Wide application of event-driven architectures in everyday business
scenarios.

A few of the constraints while using this pattern are as follows:

Works in conjunction with the CQRS pattern to provide full functionality
for a business domain entity.

The overall complexity can be high, depending on the nature of the
business domain.

Must support compensating transactions to handle missing events.

The schema may have to be generalized for all entity types.

Some common uses of this pattern are as follows:

Highly scalable transactional systems that use the asynchronous
messaging pattern

Event-driven architectures

Clean architecture

This is another very popular architecture style that is quite powerful while
building data-oriented API microservices. The clean architecture was
introduced by Robert C. Martin, also popularly known as Uncle Bob. He
presented the basic concepts of this pattern in the following article:

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-
architecture.html.

For an API microservice, the clean architecture can be visualized as follows:

https://blog.cleancoder.com/uncle-bob/2012/08/13/the-clean-architecture.html

Figure 6.7 – API design using the clean architecture

The central theme of the clean architecture is the principle of decomposing
your system into layers that have distinct and well-defined roles. The
different layers in the architecture can be summarized as follows:

Entities: This layer, called the domain layer, represents the domain
models (or entities) and the enterprise business rules that apply to it. The
domain models and rules are universal to its usage and do not change
based on the various interactions. They control what validations apply to
the data before being stored in the persistent store.

Use Cases: This layer, called the application layer, represents the various
application flows and business logic that operate on these entities. For an
API service, typically, the handler and manager components participate in
executing the various business functionalities.

Interface Adaptors: This layer serves as the main interaction touchpoint
between the application layer and its interaction with the external world,
such as a database or user interface.

Framework and Drivers: This layer represents the framework and
infrastructure components that participate in the flow of information in
and out of the system.

You can find an example of how to use this pattern in the following GitHub
repository: https://github.com/mattia-battiston/clean-architecture-example.

There are derivatives of the clean architecture, namely the onion
architecture and the hexagonal architecture. These are basically
implementations of the key concepts presented in the clean architecture. The

https://github.com/mattia-battiston/clean-architecture-example

core objective of all these variations is testability and separation of concerns.
The clear isolation between the layers allows us to reduce the dependencies,
thereby allowing any specific layer change to be implemented independently
of the others. The layer that is most important and stable will be the domain
model.

Let's study the pros and cons and typical usage scenarios of the clean
architecture pattern.

The key benefits of this pattern are as follows:

Improves testability of code.

Independent from the database.

All the business logic is constrained within the use case layer.

Can be easily applied to most types of business domains.

A few of the constraints while using this pattern are as follows:

Code blocks may be duplicated across layers.

Implementation warrants discipline and practice.

Some common uses of this pattern are as follows:

API services involving complex business domains with multiple
workflows

Synchronous HTTP API services that make use of additional patterns
such as Aggregator, Saga, and so on

Alternative to CQRS to keep complexity low

Backends for Frontends (BFF)

The Backends for Frontends (BFF) pattern operates on the principle of
creating separate backend services for separate frontend applications or
channel interfaces. This technique is preferred when the actual backend
service containing the domain logic and other rules must not change based on
the UI interfaces. This pattern introduces a wrapper layer on top of the actual
backend service. These lightweight wrapper services act as backends for the
respective frontends handling communication and interaction with the
underlying data service:

Figure 6.8 – BFF pattern

You can read more about the BFF pattern here:
https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-
frontends.

Let's study the pros and cons and typical usage scenarios of the BFF pattern.

https://docs.microsoft.com/en-us/azure/architecture/patterns/backends-for-frontends

The key benefits of this pattern are as follows:

Enhances the experience based on the client

Better security and control over the channels

Also acts as an aggregator, removing chattiness between the UI and
backend services

A few of the constraints while using this pattern are as follows:

High maintainability due to code duplication among BFFs.

Increase in deployment complexity if more frontend applications are
used.

Requires discipline for strict adherence to the BFF pattern. The APIs are
mostly passthrough ones and don't have any business logic.

Some common uses of this pattern are as follows:

As a backend for responsive or adaptive UI applications

Implementing micro frontends-based architectures

Additional security layer between the UI layer and the actual domain
services

OTHER PATTERNS
Depending on your business requirements, you may wish to make use of various other
design patterns for your entire microservices architecture, such as Aggregator, Saga,
Proxy, Chaining, Strangler, Branching, and so on. It is suggested that you review them
using the references provided at the end of this chapter.

In the next section, we will take a brief look at a few of the most important
tools that are currently available to the developer community while building
API-centric solutions.

Developer toolbox
As an API developer, you must improve your awareness and master your
skills on using a variety of tools that will aid in implementing, testing, and
even debugging and troubleshooting production issues. In this section, we
have provided references to a few commonly used tools while developing
applications for the Azure cloud:

Visual Studio Code: Visual Studio Code is a free code editor from
Microsoft that allows you to quickly develop, build, deploy, and test your
modern cloud applications. It can be used on Windows, Linux, and
macOS. It has built-in support for a wide range of programming
languages. It also has a community of widgets and plugins that will
immensely improve your productivity.

If you are a developer, you must try out Visual Studio Code. Visit this
link to find out more: https://code.visualstudio.com/.

Swagger.io: This is another very useful productivity tool that aims to
simplify your API development process. You can quickly design your
APIs with robust documentation that's created as per the OpenAPI
Specification v3. The open source tools come bundled with rich visual
editors that are quite intuitive and easy to use, thereby simplifying the
whole design experience.

Find out more here: https://swagger.io/.

https://code.visualstudio.com/
https://swagger.io/

Postman: Collaborate with your teams while you develop amazing APIs.
Postman is a robust API testing tool. It provides a visual interface to
simulate the HTTP request. You can create workspaces and share them
with your teams.

Postman is the tool for your API-first development needs. Find out more
here: https://www.postman.com/use-cases/api-first-development/.

DAPR.io: DAPR is a framework for building highly resilient event-
driven microservices.

Find out more here: https://dapr.io/.

K6.io: This is a powerful open source load testing framework that can be
easily integrated as part of your CI/CD processes. With the K6
JavaScript-based framework, you can quickly create tests that simulate
user load scenarios. It also comes with a CLI version. This is very useful
during the development stages for measuring response times and
detecting any performance bottlenecks with your APIs.

Learn more about K6.io here: https://k6.io.

Apache JMeter : Apache JMeter is a Java-based open source tool
that is quite popular for both functional testing and load testing. It is the
most used tool for API performance testing. It has a friendly UI, can run
on any platform, and offers very rich reporting capabilities to visualize
the test results.

You can find out more about JMeter here: https://jmeter.apache.org/.

Telerik Fiddler: Fiddler is another very useful web debugging tool. It
captures the network traffic between your computer and the internet. This

TM TM

https://www.postman.com/use-cases/api-first-development/
https://dapr.io/
https://k6.io
https://jmeter.apache.org/

tool is very useful in inspecting both incoming and outgoing traffic to
visualize what's happening with HTTP requests. It can be used to replay
any specific transactions to debug and isolate issues.

You can find out more about Fiddler here:
https://www.telerik.com/fiddler.

jwt.ms: If you are using JSON Web Tokens (also known as OAuth
tokens), then jwt.ms is the tool to use to view the claims that are part of
the token. It has a simple UI that decodes your token and displays the list
of claims contained in it, along with an explanation of the type of claim.

Start decoding your JSON Web Tokens by visiting this: https://jwt.ms/.

Azure Application Insights: You can bake in support for rich telemetry
capture in all your API applications using Azure Application Insights.
Use the logs to derive insights and detect performance issues, diagnose
common errors, visualize an HTTP request using the end-to-end
transaction flow, and collect metrics to derive various other metrics.

Find out more about Azure Application Insights here:
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-
overview.

The tools listed in this section are just an initial set that you must be familiar
with. However, based on your choice of technology and platform, you may
want to explore other tools that are frequently used by the community.

Summary

https://www.telerik.com/fiddler
https://jwt.ms/
https://docs.microsoft.com/en-us/azure/azure-monitor/app/app-insights-overview

In this chapter, we reviewed some important design -related aspects to
consider while building API solutions. We also studied some of the
recommended practices that can be easily used by development teams as a
design checklist. Great API design requires discipline and constant attention
to detail. By now, you must be familiar with the most common architectural
patterns for implementing API-based microservices solutions. You should
further explore the references and examples shared, so that you feel more
confident while approaching your microservices designs in the future.

The practices and patterns discussed in this chapter are only a starting point.
Building modern, API-centric solutions on the cloud requires a good balance
between technical strategy and business workflows. You must experiment
with DDD practices and use techniques such as Event Storming to model
your domains more accurately, as well as to identify the various API
microservices required for your solution.

In the next chapter, we will explore the importance of having the right
DevOps practices in place for your API platform life cycle processes.

Further reading
API Design Best Practices for Azure: https://docs.microsoft.com/en-
us/azure/architecture/best-practices/api-design

API Design Best Practices and Design Principles:
https://tutorialspedia.com/api-design-best-practices-and-design-
principles/

16 REST API Design Best Practices and Guidelines:
https://searchapparchitecture.techtarget.com/tip/16-REST-API-design-

https://docs.microsoft.com/en-us/azure/architecture/best-practices/api-design
https://tutorialspedia.com/api-design-best-practices-and-design-principles/
https://searchapparchitecture.techtarget.com/tip/16-REST-API-design-best-practices-and-guidelines

best-practices-and-guidelines

API Testing: https://docs.katalon.com/katalon-
studio/docs/introduction_api_testing.html

9 Types of API Tests: https://nordicapis.com/9-types-of-tests-to-perform-
on-your-apis/

Microservices Archtecture

Microservice Granularity: http://www.opengroup.org/soa/source-
book/msawp/p6.htm

How Granular Should My Microservices Be?:
https://tcblog.protiviti.com/2019/09/04/moving-to-microservices-how-
granular-should-my-services-be/

Design Stateless Services: https://restfulapi.net/statelessness/

Checklist on Designing, Testing, and Releasing Your APIs:
https://mathieu.fenniak.net/the-api-checklist/

Top 5 Security Considerations for APIs: https://blog.restcase.com/top-5-
rest-api-security-guidelines/

Design Patterns for Microservices Architecture:
https://www.lambdatest.com/blog/design-patterns-for-micro-service-
architecture/

The Six Most Common Microservices Architecture Design Patterns:
https://medium.com/analytics-vidhya/the-six-most-common-
microservice-architecture-design-pattern-1038299dc396

https://docs.katalon.com/katalon-studio/docs/introduction_api_testing.html
https://nordicapis.com/9-types-of-tests-to-perform-on-your-apis/
http://www.opengroup.org/soa/source-book/msawp/p6.htm
https://tcblog.protiviti.com/2019/09/04/moving-to-microservices-how-granular-should-my-services-be/
https://restfulapi.net/statelessness/
https://mathieu.fenniak.net/the-api-checklist/
https://blog.restcase.com/top-5-rest-api-security-guidelines/
https://www.lambdatest.com/blog/design-patterns-for-micro-service-architecture/
https://medium.com/analytics-vidhya/the-six-most-common-microservice-architecture-design-pattern-1038299dc396

A Quick Introduction to Clean Architecture:
https://www.freecodecamp.org/news/a-quick-introduction-to-clean-
architecture-990c014448d2/

CQRS Translated into Clean Architecture: https://blog.fals.io/2018-09-
19-cqrs-clean-architecture/

Microservices Design Patterns:
http://web.archive.org/web/20190705163602/http:/blog.arungupta.me/mi
croservice-design-patterns/

Java Design Patterns: https://java-design-patterns.com/patterns/

https://www.freecodecamp.org/news/a-quick-introduction-to-clean-architecture-990c014448d2/
https://blog.fals.io/2018-09-19-cqrs-clean-architecture/
http://web.archive.org/web/20190705163602/http:/blog.arungupta.me/microservice-design-patterns/
https://java-design-patterns.com/patterns/

Chapter 7: Accelerating through DevOps
Essentials
DevOps as a buzzword has been doing rounds in all enterprises for quite
some time now. IT leaders are busy figuring out what strategies and training
are required to make the paradigm shift within their development teams.
While there are many definitions for the term DevOps, the common theme
that emerges across all of them is the fact that if you haven't started on your
journey yet, then you must act now with a sense of urgency.

Organizations understand that their digital transformation will not be
complete without an overhaul of their DevOps practices. For the short term,
they focus on the key essentials that will meet their immediate business
needs. For the longer term, they have to plan for more increased DevOps
adoption to improve their IT maturity and Software Development Life
Cycle (SDLC) practices followed across the various teams.

The purpose of this chapter is to focus on the importance of DevOps adoption
within an enterprise and how to get it right. SDLC practices have a tight
bearing on the business outcomes and making the culture shift at the right
time can improve the overall maturity of the enterprise. We will understand
the practices through the lens of how they bring value as measured through
the various metrics of DevOps maturity.

In this chapter, we are going to cover the following main topics:

Business objectives and key results

The DevOps Dojo framework

DevOps metrics and their importance

Identifying the maturity index for your enterprise

The power of GitHub and Azure DevOps

DevOps in practice

Tracking DevOps initiatives in backlog

We will make use of the DevOps Dojo White Belt foundation framework
introduced by Microsoft to structure the recommendations provided in this
chapter.

By the end of this chapter, you will understand how to prioritize your
initiatives revolving around the various pillars and practices of DevOps to
establish a modern process, thereby blurring the line between development
and operations teams.

FOOD FOR THOUGHT
What is the DevOps maturity level of your organization? How do you measure the success of
your DevOps practices?

Business objectives and key results
As we have understood in the previous chapters, enterprise initiatives are
usually prioritized based on the business outcomes – some of them are
immediate while others are more long-term. Hence, it is important to study
the typical Objectives and Key Results Objectives and Key Results
(OKRs) that may apply to any enterprise context and how they map to the
various DevOps practices that must be implemented by the development
teams.

Some of the important objectives and key results are as follows:

In the next section, we will explore the DevOps Dojo framework introduced
by Microsoft to evaluate how the OKRs map to the various capabilities.

The DevOps Dojo framework
In 2020, Microsoft introduced the DevOps Dojo White Belt framework,
grouping the most important foundational practices into four pillars and eight
capabilities, as shown here:

Figure 7.1 – DevOps Dojo White Belt foundation capabilities and pillars

You can read more about the DevOps Dojo White Belt foundation here:
https://docs.microsoft.com/en-us/learn/paths/devops-dojo-white-belt-
foundation/.

Each capability area and pillar is briefly described here:

https://docs.microsoft.com/en-us/learn/paths/devops-dojo-white-belt-foundation/

We have selected the DevOps Dojo model for the discussion of the topics in
this chapter as it is quite easy to remember and use. While the practices listed
in the White Belt foundation are only a starting point, enterprises can extend
on the concepts and identify additional practices that may be relevant for their
context.

An important point to note would be that if you are planning to be a digital
business, then streamlined DevOps processes should be part of your DNA.
Otherwise, it will be quite difficult to accomplish the business objectives (as
defined earlier in the Business objectives and key results section) that may be
critical for the survivability of your business. We shall take a detailed look
into each of these capabilities in the DevOps in practice section of this
chapter.

Let's first understand the important benefits of having a good DevOps
strategy.

The benefits of having a good DevOps
strategy

The key business benefits that will be realized using this comprehensive
DevOps strategy can be easily summarized as follows:

Reduce lead time for releases from months to weeks.

Increase the pace of delivering innovation/new capabilities to end users.

Reduce the risk of detecting quality issues in production.

Improve reliability of the production solution and recover from unplanned
outages fast with minimal or no business impact.

Enterprises today may already have implemented different practices or be in
the process of achieving them. Hence, it will be useful to assess your current
maturity level to establish a baseline on your current maturity level. In the
next section, we shall discuss, how you can use the framework to depict your
maturity model.

DevOps metrics and their importance
There are a lot of different metrics that can be tracked by the development
teams, to determine the maturity level of the DevOps practices and standards
followed. These metrics help to identify issues or focus areas that must be
investigated upon. They also provide feedback to ascertain the degree of
business impact based on the priorities established for the team. Some would
require immediate attention, while others will have to be planned.

Refer to this link to understand the comprehensive list of DevOps metrics as
suggested by Gartner: https://www.gartner.com/en/documents/3760663/data-
driven-devops-use-metrics-to-guide-your-journey.

In this chapter, we shall focus on nine of the most important metrics that are
quite common and relevant while building API-centric solutions. They are as
follows:

Deployment frequency: This measures how frequently and with ease
you can deploy software into production. Gone are the days when teams
would follow a waterfall kind of approach and deploy something at say

https://www.gartner.com/en/documents/3760663/data-driven-devops-use-metrics-to-guide-your-journey

the end of 6-8 months. Businesses want greater agility today, and they
want to release features in more of an iterative manner but at great speed.
Teams should be able to deploy multiple times a day or even a week, if
possible, without breaking anything.

Lead time: Lead time typically refers to the overall duration it takes from
the time the business needs/requirement is identified to the time it is
finally deployed and is in use in production environments. Lead times are
highly dependent on how efficient your SDLC process is and how well
you manage your backlog and prioritize them. This metric is very crucial
for start-ups as they would like to release new capabilities at a faster pace
than other conventional businesses.

Deployment time: Deployment time is the measure of how long it takes
to deploy or upgrade an existing solution. Deployment time is impacted
by the degree of automation in place for both installation and subsequent
testing as needed. Manual processes, if any, must be eliminated, as they
are both time-consuming and error-prone.

Code quality: Code quality refers to a combination of metrics that
determine the overall quality of the code that is being produced by the
teams. The code quality index has a direct bearing on the technical debt
of the solution. Code quality is typically measured using static code
analyzers and other tools to detect issues or bugs in the code. Most of the
static rules focus on identifying issues related to the usage of coding
standards, design, code maintainability, performance, security, and other
language-specific improvements. It can be further augmented by periodic
manual inspections using a checklist on coding standards. The team
should monitor code quality consistently and keep it within the acceptable

thresholds. Many teams periodically prioritize fixing the technical debt
over building new business functionality.

Automated test percentage: Automated testing is a measure of the
degree of automated tests that can be run during every release to certify
the quality of the change. This includes all types of testing, such as unit,
functional, integration, performance, and even security testing. These
automated tests can quickly determine whether the change introduced can
significantly impact a deployed service. This metric is always in
discussion as it takes a significant investment of time for the automation
to be robust and useful. For API platforms, this is a must-have metric.

Change failure rate: Change failure rate refers to the ratio of the count
of failed releases to the total releases done. It is reflecting on how many
releases impacted the solution, something that requires proper root cause
analysis (RCA) to avoid similar mistakes in the future. Release failures
can happen due to multiple reasons. A few of them could be due to people
issues (mistakes made by the DevOps team), but many others could be
due to environmental factors as well. It is important to follow a structured
RCA process to avoid repeating mistakes.

Mean time to recovery (MTTR): MTTR refers to the duration it takes
for a service to recover from the initial reported incident or detection of
failure to the getting back into a proper healthy state. Outages in a
production environment will disrupt the rhythm of the business, leading
to huge financial and credibility losses. MTTR should be measured and
controlled by using strategies to avoid downtime or availability issues.

Customer Tickets: The adoption of any solution is largely dependent on
the ease with which users can make use of the solution. The count of
support tickets is also a measure of how good the solution is. A high
count indicates the solution deployed is quite poor and not usable.
Customers usually have the tendency to write feedback both on social
media and or company websites if they are not happy with anything.
Hence, all these feedbacks must be consolidated as customer support
tickets that make their way as feedback to the respective teams involved
in developing a service.

Feature velocity: Feature velocity refers to the count of epics or features
that are delivered by a given team, within a specified period. It is
expected that during the initial periods of the project, the velocity will be
low. But as the team progresses and has a strong DevOps culture, the
velocity should ideally increase and reach an optimum threshold level
reflecting higher productivity. The investments that are made in the initial
2-5 sprints around automation and other foundational elements usually
manifest as greater feature velocity in the long term.

NOTE
Enterprises are encouraged to review the various list of metrics and select the ones that
best suit their needs and purpose. The better your ability to measure is, the higher your
chances are of being successful in achieving the business goals.

In the next section, we will explore a model that can be used for assessing our
current DevOps maturity and identify focus areas for improvement.

Identifying the maturity index for your
enterprise
All enterprises must do a self-assessment to ascertain their current maturity
levels. This is required to establish a current benchmark and then set the
course for future improvements.

In this chapter, we have presented a simplified maturity model using three
levels, namely Minimum, Foundational, and Advanced:

Figure 7.2 – Simple model to define the DevOps maturity level

The list of important practices or initiatives must be ranked using the maturity
levels. For each higher level, the overall count of practices followed is
inclusive of the practices of the lower levels. The Maturity model provides a
good way to plan out your DevOps investments and initiatives.

The levels are indicative of the business outcomes that are possible for the
enterprise. The higher the level, the better the alignment and outcomes on
different objectives.

Let's assume that each capability area has about 10 practices. We prepare a
ranking scale to define the importance of each practice by the maturity level.
Certain practices are a must-have for the minimum level, whereas others are
important for the higher levels.

Thus, we can create a simple DevOps maturity model as follows:

Figure 7.3 – Representative enterprise DevOps maturity model

In Figure 7.3, we have indicated as an example the count of practices that
will be relevant at each level. Using a maturity index model, enterprises can
do an internal assessment to validate their existing level, and then plan out an
action to shift the needle toward the advanced level. It is evident that the

business benefits increase with the adoption of greater practices within the
enterprise.

EXERCISE
For your organization context, can you prepare a simple maturity model? Identify the
important metrics that you would like to measure. Identify the challenges that you may
experience while measuring them.

In the next section, we will briefly review the tools available from Microsoft
to streamline and transform your DevOps life cycle processes.

The power of GitHub and Azure DevOps
GitHub and Azure DevOps are two powerful offerings from Microsoft that
will serve as a complete DevOps toolset. From managing your backlog and
team processes to a Git-based code repository to having the ability to execute
CI/CD processes with automated testing, you will discover that GitHub and
Azure DevOps are the perfect solutions for you.

At the time of writing this book, many additional new capabilities have
already been planned as part of the GitHub offering and you should review
the product capability page for the latest information:
https://azure.microsoft.com/en-in/products/github/.

Read more about the Azure DevOps offering here:
https://azure.microsoft.com/en-in/solutions/devops.

In the next section, we will cover the implementation-specific recommended
guidance around some of the key DevOps practices.

https://azure.microsoft.com/en-in/products/github/
https://azure.microsoft.com/en-in/solutions/devops

DevOps in practice
Getting your DevOps strategy and implementation right depends largely on
how well you can think through the importance and value-added of each
practice, and convince the senior leaders and other stakeholders to share the
same point of view. Without having stakeholder buy-in, some of the
initiatives may not get the desired and required attention. As DevOps is a
combination of people, processes, and technology, it is the people aspect that
offers the most challenge when it comes to enterprise change management.

The goal of this section is to provide some ideas, tips, and recommended
guidance around some of the key practices that are relevant for API-centric
solutions. We shall make use of the Packt Insurance Inc. case study as a
reference for the examples shared.

NOTE
In this section, the focus is to provide implementation-related guidance without going deeper
into explaining the fundamental concepts. You are advised to review the additional reading
materials to get a much deeper understanding of the areas that may be of interest to you.

Capability – continuous planning

The core objective of continuous planning is to ensure that all work that
happens must be aligned with business goals. Furthermore, planning is more
of an iterative process, wherein the work for the various teams (tracked as
backlog/bugs/issues) must be prioritized constantly based on feedback
received from users or demands of the business. This will make sure that the
team can deliver incremental value with each release.

Let's review the guidance around the key practices.

Work planning using epics, features, and a user
story

The first step in any software development project is to identify the functional
and technical requirements that should be part of your Product Backlog.
However, this backlog will not be static, but constantly evolve over the
course of time and be kept updated by the Product Owner.

The product backlog is organized using epics and features. It is important that
this is always based on the high-level business goals and objectives that have
been envisaged by the leadership team. A simple model that represents how
to organize your Product Backlog is provided here:

Figure 7.4 – Work planning using epics, features, and a user story

User stories typically refer to the atomic unit of work that must be fully
completed to accomplish the specific user want. User stories are generally
written using the I.N.V.E.S.T (Independent, Negotiable, Valuable,
Estimable, Small, and Testable) principles. Depending on your delivery
methodology followed, the size and complexity of this must be managed by
your Product Owner.

Additionally, maintaining end-to-end traceability is critical to verifying
whether the features envisaged have been fully implemented or not.
Furthermore, as issues are identified, they can be tracked against the
respective features to understand their quality.

QUESTION
How are you managing the backlog for your projects? Can you identify 2-3 improvements that
will make work tracking more effective for your teams with full traceability to the business
objectives?

Estimation, prioritization, and release planning

Once the initial set of backlogs has been created, the development teams will
then provide a high-level estimate to indicate the level of effort involved for
each of the stories. You may make use of what methods suits your team, but
the main idea is to create some rough order of magnitude of work planning to
determine the count of resources that will be required. The Product Owner
then must prioritize the stories in the order they should be implemented and
come up with a release plan. The release plan presents a roadmap view of the
various capabilities and when they will be available in production. The
roadmaps enable the cross-functional teams to align their business processes
or other dependencies accordingly.

In the following figure, we have depicted how a plan can be created of the
various capabilities that have been identified for the product:

Figure 7.5 – Release planning example

As evident from the figure, release planning provides a high-level view of
which features will be available when. This is particularly useful when you
are following a sprint-based delivery methodology. For Kanban or other

delivery methodologies, this approach can be easily extended to identify the
priority in which features can be released.

Backlog refinement and iterative planning

One of the most important practices for Agile and the iterative development
process is to constantly refine the backlog throughout the course of various
Sprints and/or releases. As enterprises are moving toward more business
outcome-based IT initiatives, it is critical for the Product Owners to focus on
goals that will deliver more business value as opposed to just having a wish
list. Hence, planning is more of a continuous activity to achieve the desired
agility in bringing innovation to the markets.

Most cloud platform providers, including Microsoft, plan their backlog for
barely a quarter of a year ahead. Apart from focusing on innovations, they
also make use of channels such as user voice to prioritize their backlog. This
gives them the ability to meet customer demand while balancing other
priorities for the team.

Capability – continuous integration

The core objective of CI is to ensure that developers adhere to some degree of
discipline while creating their work products. Development teams are often
composed of diverse people with varied skills and experiences. For large
enterprises, often these teams are geo-distributed. By implementing proper CI
practices, the team can achieve better productivity and synchronicity in
action.

Let's review the guidance around the key practices.

Code repository and version control

Source Code Management (SCM) refers to the practice of tracking changes
happening to your code base as new features and fixes are introduced. As
software projects grow, the repository of code also grows with time, and
hence it becomes critical to ensure that updates are merged properly without
breaking anything. SCM is typically implemented through a version control
tool that assists in parallel development across multiple developers using the
same code repository.

In recent times, Git has become the preferred version control system for
developers. A Git repository (repo) contains all the source code files that
have been added by the developers along with full version history.

You can find more information about GitHub repos here:
https://guides.github.com/introduction/git-handbook/.

While working with Git repos, one of the important decisions to take would
be to follow either a mono-repo (single) or multi-repo (multiple) strategy.
While there are benefits of one over the other, proper trade-off considerations
must be made for your specific enterprise scenario to decide on one way or
the other.

For example, mono-repos foster better team collaboration and break down the
team silos at work, effecting better reuse and consistent quality through the
use of standardized CI processes across the teams. On the other hand, multi-
repos offer better granularity to manage disparate teams and their separate
life cycles.

While building API platforms, a simple rule of thumb that you can follow is
that you always start with a single repo first (even if it caters to many features
or API products), and then create additional ones only when necessary to

https://guides.github.com/introduction/git-handbook/

address any trade-offs. This will help you achieve better control, thereby
ensuring high-quality products. Cultural change within your teams, which is
the main philosophy of mono-repos, drives success in the long term.

Branching strategy

While using Git repos, you must decide on the branching strategy to be
followed by the team. The branching strategy serves as a guide for the code
promotion model for the team. When doing parallel development across
multiple teams, there are a lot of modules and features for which code must
be promoted by the developer from their local branch to higher branches for
the CI process to complete.

In this figure, we have depicted the code promotion model in a simplified
way:

Figure 7.6 – Code promotion model for an end-to-end CI process

The most popular branching strategies are as follows:

Gitflow

GitHub flow

Trunk-based development

GitLab flow

Oneflow

Depending on your context, you may decide to use any one of the strategies.
In recent times, trunk-based development has gained more popularity as it
focuses on bringing agility to the releases.

You can read more about trunk-based development here:
https://trunkbaseddevelopment.com/.

Benefits of trunk-based development

Trunk-based development facilitates increased agility for development teams
when releasing features to production. The feature teams will develop
features using temporary and short-lived feature branches. The changes will
be unit tested and verified in the development environment and then
subsequently pushed to the master branch using the Git PULL request
feature. This is explained in the subsequent sections.

PULL requests, merging, branch policies, and
security

Developers are expected to merge only near-production-ready code to the
master branch.

Hence, it is imperative to define a set of policies and rules that detect any
violations and prevent the accumulation of technical debt that may impact the
code quality.

When using Azure DevOps, adhere to the following (minimum) rules:

Branch policy:

a) At least one reviewer other than the developer must be mandatory.

b) Don't allow developers to approve their own changes.

https://trunkbaseddevelopment.com/

c) Ensure you check for linked work items to maintain traceability.

d) Ensure all review comments are resolved before merging.

e) Preferably delete the feature/developer branch after merge.

f) Add additional reviewers for certain sections of code or types of files.
For example, changes in any deployment-related files must also be
reviewed by the DevOps lead on the project.

PULL request:

a) The developer will raise a pull request for the master branch only.

b) Work item association is a must for every PULL request.

c) CI build validation should pass before the code is merged into the
master branch.

Build validation:

a) Use CI build (GATED CHECKIN BUILD) validation for PULL
requests.

b) Automatically include code reviewers – list of reviewers to be
preconfigured.

Branch security:

a) Appropriate branch-level security should be configured so that a
bypass of policies outlined is not possible.

b) Administrative rights must be with limited team members only.

DevOps administrators can configure the rules in GitHub and Azure DevOps.

Automated CI builds

Automated CI builds will be configured using CI build pipelines (using
YAML files). There may be multiple CI builds per repository. These builds
will be triggered during PULL requests, to conduct quality checks on the
developer's branch, and will succeed only if the configured rules are satisfied.

You can read more about YAML files here: https://docs.microsoft.com/en-
us/azure/devops/pipelines/yaml-schema?view=azure-
devops&tabs=schema%2Cparameter-schema.

Typical activities that will be part of the CI build process are as follows:

Get the latest code base on the branch.

Download any dependent packages.

Build and compile the code.

Check for adherence to coding standards using analyzers such as Roselyn,
StyleCop, and FxCop.

Run automated unit tests.

Perform code coverage analysis.

Run CredScan to detect any security vulnerabilities.

Run an additional static code analyzer as applicable.

When using SonarQube integration, run the sonar analysis tools.

Check for open source vulnerabilities using tools such as WhiteSource.

Create build output packages that can be used for CD processes.

In the next section, we have provided a checklist that you can use to verify
the completeness and coverage of your unit test cases.

https://docs.microsoft.com/en-us/azure/devops/pipelines/yaml-schema?view=azure-devops&tabs=schema%2Cparameter-schema

Checklist for automated unit tests

Developers can make use of the following checklist when writing automated
unit test cases:

Each functional requirement that applies to the class or component must
have a test case of its own.

Each design-related element that applies to the class must have its own
test case.

All unique data flows must be tested by at least one test case.

Test cases must be defined to verify exception scenarios and invalid input
states.

Test cases must be defined for all known input-output patterns, including
error scenarios.

Test cases must be defined for all boundary conditions.

BVT automation

Build Verification Tests (BVTs) will be automated and run on every build
to act as a sanity check and prevent any functional breaks as new code is
being integrated.

It is recommended that BVT coverage is planned to cater to most priority 1
scenarios or happy paths of the solution. Typically, this should fall in the
range of around 40-60% of the test scenarios.

For example, the following graphic depicts the sample results of a BVT test
cycle run:

Figure 7.7 – Sample BVT automation report

BVT automation plays a very important role when any hot or urgent fixes
must be deployed. The project teams will not have sufficient time to do end-
to-end testing. Hence, running the BVT tests will give some degree of
confidence to the project team while releasing the hotfix to production. BVT
test cases must be periodically revised as new features or changes are
introduced in the software.

Capability – continuous delivery

The core objective of CD is to ensure that builds are deployed to all higher
environments including production as fast as possible in a fully automated
fashion without incurring any major downtime that will impact the
availability of the service.

Let's review the guidance around the key practices.

Infrastructure as Code (IaC)

Infrastructure as Code (IaC) is the management of the infrastructure and
cloud services through a descriptive model as specified using templates and
scripts. The templates/scripts will be versioned control within Git repos and
follow the same life cycle as other code artifacts.

The primary goal of IaC is to make the provisioning of the infrastructure
components immutable, seamless, and consistent across all environments by
managing them through configuration. Changes that are made to definition
files can be validated and then rolled out through release pipelines.

For the Azure cloud, there are various ways through which this can be
accomplished:

Azure-native SDKs

The Azure CLI

ARM and JSON templates

PowerShell scripts

Third-party/open source templates: Terraform, Ansible, and so on

IaC is a very important topic that all teams must pay attention to from the
very beginning of the project. It has to be thoroughly planned and the
investments in this practice will pay dividends in the long term as the systems
expand and get more complex over the course of time.

Let's review the key IaC principles in the next section.

Key IaC principles

The following are the key principles that are the basis for the adoption of IaC:

Environments can be easily reproduced.

Environments are disposable.

Environments are consistent.

Environments are agile.

Processes are repeatable.

Let's explore other important practices of CD in the subsequent sections.

Build once

The code maintained at the master branch of each repository should be near
production-ready. The builds of this branch should get deployed to all higher
environments as part of the release management process. This will ensure
predictability and assist in the troubleshooting and reproduction of any
reported incidents, in lower environments as well.

CD builds and release pipelines

The artifacts produced as output of the CD builds will be used as input while
invoking automated build deployments to all environments using release
pipelines in Azure DevOps.

CD builds will be configured to run automatically on completion of CI
builds. These can also be triggered manually. Typical tasks that are part of
CD builds are as follows:

Create build outputs and deployment artifacts.

Copy deployment artifacts to the build drop location.

Create deployment packages (Docker images or Helm packages).

Push container images to Azure Container Registry.

A release pipeline will typically comprise multiple stages (usually one per
environment) and have approval gates configured as part of the standard
workflow. This is to ensure that checks and balances are in place before the
builds are promoted to higher environments.

In the following figure, we have depicted a sample release pipeline that
depicts the flow of promoting the build from one environment to another in
sequence with certain approval gates:

Figure 7.8 – Sample release pipeline setup in Azure DevOps

As you can observe, the build artifacts are promoted from dev to test and then
to production. In the workflow, there is a gated check after each step. This

ensures that environment owners have verified that the build is of good
quality before approving the deployment to its respective next stage.

NOTE
The configuration of release pipelines is dependent on your repo and branching strategy.
Hence, for your projects, you may have one or many release pipelines. With a good amount of
modularity, better isolation and control can be obtained for various workloads or features.

Test early

Left-shift testing practices must be followed as part of the build processes to
detect issues early. The objective is to mitigate quality issues early in the life
cycle without waiting for them to surface through production incidents.

This practice is often undervalued by most development teams. Hence, with
the demand for greater agility for the releases, left-shift testing strategies are
increasingly becoming important and proper planning must be done in
conjunction with other testing practices to realize the true potential of this
practice.

Feature flags

Feature flagging is a programming technique that allows developers to turn a
feature of a software application or a unit of business functionality on or off
without having to release or changing the code in production. Wrapping code
with feature flags allows developers to decouple feature rollout from code
deployment. A feature flag is also called a feature toggle. However, feature
flags require careful planning as the toggle shouldn't impact the normal use of
the software.

The granularity of feature flags can be defined as follows:

At a feature level (recommended)

At a business microservice level

At a physical service level

At an operation level

TIP: DEFINE FEATURE FLAGS USING
REQUIREMENTS
Feature flag requirements must be captured as part of the user stories. The impact of
turning off a feature must be thoroughly analyzed before these flags are used in code.
Hence, there should be a very good understanding among project teams, the Product
Owner, and the solution architects on the topic of feature flags.

Canary/blue-green deployments

The feature teams will focus on building capability within the release
management processes, to roll out software releases for early testing or
minimize the overall downtime required for the releases.

In the following figure, we have depicted at a high level the difference
between canary and blue-green deployment strategies:

Figure 7.9 – Canary versus blue-green deployments

The specifics of the strategy will be discussed and agreed upon with the key
stakeholders by defining the goals and tracking implementation through the
backlog items.

For an API platform that uses AKS, you can refer to the various deployment
strategies here: https://azure.microsoft.com/en-us/overview/kubernetes-
deployment-strategy/.

Capability – continuous operations

https://azure.microsoft.com/en-us/overview/kubernetes-deployment-strategy/

The core objective of continuous operations is to establish practices that
allow for the detection and remediation of issues after a service has been
deployed and operational for end users. This is the most important capability
area for running the show on cloud platforms.

Let's review the guidance around the key practices.

Security and compliance

Security and compliance-related requirements must be baked into
development processes such as static code analysis and security scanning of
components. Any functional or compliance-related capabilities, such as
traceability and auditability, required by the platform will be captured as
explicit business requirements. These requirements demand thorough
analysis with respect to other requirements such as data privacy and retention
before the solution is implemented consistently across the product.

Azure as a cloud platform adheres to the global standards on compliance.
You can read more about it here: https://azure.microsoft.com/en-
in/overview/trusted-cloud/compliance/.

EXERCISE
Review the security policy standards for your enterprise and understand how you would go
about achieving them in your solution.

Continuity and resilience

Business continuity and disaster recovery processes and strategies will be
clearly documented and captured. Dry runs must be conducted using non-
production environments to ensure the correctness and relevance of the
procedures.

Telemetry and monitoring

https://azure.microsoft.com/en-in/overview/trusted-cloud/compliance/

Both operational and business telemetry will be implemented within the
platform components, to assist in the monitoring and reporting of issues.

Azure Monitor provides rich dashboarding capabilities to monitor
application-specific metrics, resource health, and utilization to detect
anomalies and provide timely intervention.

Some key features of Azure Monitor that you must plan to use are as follows:

Application Insights for end-to-end transaction traceability, exceptions,
and performance metrics

Container insights for microservice usage and health-related statistics

Custom dashboards tailored for use cases to track usage and reliability
metrics

Alerts to detect anomalies and notify the team for appropriate action

Refer to this link to know more about Azure Monitor:
https://azure.microsoft.com/en-us/services/monitor/.

Another important resource for consideration is Azure Advisor. Azure
Advisor periodically scans your deployed resources and analyzes their
configuration and usage telemetry against best practices and rules. It then
produces a report of findings categorized based on impact, along with
recommendations that can help you improve the cost-effectiveness,
performance, high availability, and security of your Azure resources.

In the following screenshot, we have shown a sample Azure Advisor
dashboard view:

https://azure.microsoft.com/en-us/services/monitor/

Figure 7.10 – Sample recommendations report of Azure Advisor

As part of your IT compliance strategies, ensure that these guidance and
alerts are periodically reviewed by the different teams and action is taken to
resolve the issues reported.

Zero-downtime deployments

Risks associated with doing deployments to production must be proactively
planned and managed. Methods and techniques should be developed to
minimize the impact. For mission-critical applications, any downtime on the
environment will impact the business. Hence, safe deployment strategies
must be implemented, such as the following:

Deployment rings

Blue-green deployment

Canary deployments

NOTE
The trade-off of cost versus availability must be determined properly to be clear on the
ROI. Design for zero-downtime deployments usually adds more complexity to the
solution.

Shift-right testing

Shif-right testing practices offer the ability to test preview releases directly in
the production environment. The objective is to make use of the logs and
insights to verify the completeness of the feature by doing actual usage
testing. This allows feature teams to reduce the cycle time through
progressive experimentation using feature flags. The feature, if found faulty,
can be turned off without impacting the other parts of the application.

Capability – continuous quality

The core objective of continuous quality is to ensure that checks and balances
are in place to continuously evaluate the overall solution quality as new
enhancements and fixes are released by the development teams. This includes
both cloud foundation services and custom solution components.

Let's review the guidance around the key practices.

Quality requirements

Solution quality of service requirements (that is, non-functional
requirements) will be prioritized and tracked alongside the functional backlog
and implemented as part of the sprint cycles.

The Definition of Done (DOD) for these types of backlog items will capture
the specific and measurable abilities of the solution.

Quality-driven solution design

Software design best practices will be followed for each of the components to
ensure the following:

Modularity

Testability

Maintainability

These practices will be defined as part of the development standards and used
as a reference when doing code reviews and other discussions.

Robust unit and integration tests must be designed and implemented, which
can be used during the CI build process to detect any breaks.

TDD, left-shift testing, and test automation

Test-driven development (TDD) practices must be used wherever
applicable to improve the overall quality of the component design.

Testing processes must be automated to the maximum extent possible,
covering various types of testing, so that the builds can be tested quickly in
lower environments for quality certification before being moved to high
environments, including production.

NOTE
Feature teams must prioritize automated testing strategy very early during the development
cycle to benefit in the long term.

Most of the testing activities must be automated. This will expedite any
testing cycles as the results can be produced within a few hours only.
Furthermore, the team must constantly invest time to increase the test
automation coverage.

Process and governance

The feature teams will define a list of criteria that will act as the common
understanding for the DOD across various stakeholders of the project. These
criteria will be used to verify the completeness of the output at the end of
each sprint/life cycle stage for any backlog item.

Compliance and standards

Applicable compliance requirements for cloud resources must be codified
using Azure Blueprints and deployment at the subscription and resource
group levels.

Read more on Azure Blueprints here: https://azure.microsoft.com/en-
in/services/blueprints/.

Quality measurements

https://azure.microsoft.com/en-in/services/blueprints/

The feature teams must report against the various quality metrics using
dashboards. These metrics will cover all aspects that are relevant for the team
to measure and monitor. Typical reports will include code quality
benchmarks using SonarQube and other tools such as Velocity Charts and
Defect Density.

Capability – continuous security

The core objective of continuous security is to detect and prevent security
breaches from happening, as well as taking proactive measures to avoid any
security incidents.

Enterprises are wary of the fact that cybersecurity threats may disrupt their
business, resulting in a loss of credibility in the market. Hence, security
practices must be failproof without any room for errors. Otherwise, the
consequences can be disastrous. All enterprises invest in establishing a
security center to monitor security threats to their IT infrastructure. Hence,
running smooth cloud operations is largely dependent on how well organized
your security-related practices are.

Let's review the guidance around the key practices.

Mindset and skills

Security cannot be an afterthought and must be incorporated from the very
inception. The project teams must be periodically trained on various security
best practices.

The teams must review the DevSecOps guidelines and associated toolset to
implement the same for their cloud projects.

Find out more on the DevSecOps practices for Azure here:
https://azure.microsoft.com/en-in/solutions/devsecops/.

Application and data security

Application-specific security controls will be analyzed using the security
frame as described in Chapter 3, Architecture Principles and Styles. The
identified controls must be implemented.

Data classification and associated security requirements must also be tracked
as backlog items and implemented as per the design.

Periodic reviews should be conducted to revise the implementation.

Security architecture

Security must be baked into infrastructure by incorporating the guidelines
from the Microsoft Cyber Security Reference Architecture. You can read
more on that here:
https://www.microsoft.com/security/blog/2018/06/06/cybersecurity-
reference-architecture-security-for-a-hybrid-enterprise/.

You must track all the requirements using the backlog so that the compliance
status can be tracked.

Security controls will be designed and baked into the scripts for infrastructure
provisioning.

Identity and access management

For Azure cloud environments, identity and access management must be
controlled using Azure AD and RBAC permissions. Proper user management
policies must be deployed to prevent any unauthorized access.

Secure operations

https://azure.microsoft.com/en-in/solutions/devsecops/
https://www.microsoft.com/security/blog/2018/06/06/cybersecurity-reference-architecture-security-for-a-hybrid-enterprise/

Azure Security Center, Azure Monitor alerts, Azure Sentinel, and other
related toolsets must be used to offer secure and reliable operations.

Capability – continuous collaboration

The core objective of continuous collaboration is to achieve greater
productivity by eliminating silos and improving communication and
collaboration across different team members. High-performance teams are
ones where the members demonstrate greater coordination to achieve the
common goals for the team. That comes with autonomy and empowerment.

Let's review the guidance around the key practices.

Alignment and autonomy

Each of the feature teams must be self-sufficient in terms of skills required to
deliver the stories. Autonomy is fundamental to ensure the smooth running of
day-to-day tasks and operations. However, there is also a need for tighter
alignment on the overall goals across the various feature teams.

Various feature teams must conduct joint planning sessions to identify all
dependencies and establish clear expectations of each other during the
planning. A better alignment will lead to a good outcome. Otherwise, chaos
may prevail while the teams try to do their best within their known
boundaries and constraints.

Kanban collaboration

The feature teams should make use of Kanban boards to track work progress.
The boards will comprise stages and allow the ability to visualize the status
of various user stories, tasks, or bugs as they progress through the stages.

Wiki and teams collaboration

It is recommended to maintain all documentation as wiki content. Various
team members can then easily collaborate on the wiki content for their
respective areas. Wiki content is authored using Markdown (MD) files.

You can read more about it here:
https://guides.github.com/features/mastering-markdown/.

Documentation often becomes stale if not maintained periodically. Hence, by
managing it in a wiki alongside your code, you can implement and follow the
life cycle processes consistently. Whenever any major design decisions are
taken or code or a deployment artifact is modified, the associated
documentation must be updated as well.

Broadly, you can think of structuring your wiki content as follows:

Solution overview

Architecture and design

Work tracking and team processes

Developer guide

Environments and deployment guide

Thus, we can see that by adhering to the best practices of doing reviews,
maintaining MD files alongside code, and so on, the whole process of
creating documentation gets simplified.

Capability – continuous improvement

https://guides.github.com/features/mastering-markdown/

The core objective of continuous improvement is to facilitate the
identification of improvement areas either by channeling the feedback
received or by detecting deviation from the established metrics. Enterprises
may have a certain degree of DevOps maturity, but they must take all
feedback to improve upon their existing processes and methodologies.

Let's review the guidance around the key practices.

Measuring success through metrics

You must identify the important DevOps-related metrics that apply to your
business/enterprise context. Valuable actionable feedback is obtained only
when there is a clear way to measure the efficacy of your DevOps practices.
Furthermore, this serves as input to garner support from the leadership team
to move the big rocks that may pose challenges.

We discussed some of the DevOps metrics earlier in the DevOps metrics and
their importance section in this chapter. All teams must identify the critical
metrics and then track them throughout the life cycle stages.

Continuous feedback

Feedback must be sought from all important stakeholders periodically by
using surveys to identify what is working and what needs improvement.
Agile is all about change. So, teams must establish a culture of improvement,
by acting on the feedback received. This is very important as the priorities
may change over a period of time, requiring better adaption or even other
practices that may add value.

Value stream mapping

It is recommended that the teams conduct a value stream mapping exercise
to determine both the business workflow and process improvements that can

bring greater efficiency within the enterprise.

You can read more on value stream mapping at
https://en.wikipedia.org/wiki/Value-stream_mapping.

The important point to note would be that software products developed are
largely dependent on the existing business processes. Hence, modeling and
creating a map can yield improvement ideas, with a focus on identifying
opportunities for optimizations.

Pillar – culture

For the team to succeed in the various DevOps initiatives, there must be a
strong cultural alignment and inclination toward progressive ideas. Most of
the DevOps initiatives will fail if there is no team buy-in. There is a typical
tendency to stick to what has worked in the past. However, for all enterprises,
modernization of their DevOps practices for accelerated cloud adoption is the
only way forward.

You can read more on the cultural mindset attributes here:
https://docs.microsoft.com/en-us/learn/modules/introduce-foundation-pillars-
devops/3-explore-first-foundation.

Pillar – lean product

It is encouraged that teams follow a product-centric model while building any
software solutions. This is very important while building enterprise solutions
such as API platforms.

https://en.wikipedia.org/wiki/Value-stream_mapping
https://docs.microsoft.com/en-us/learn/modules/introduce-foundation-pillars-devops/3-explore-first-foundation

A product-centric model offers greater agility in bringing innovation to the
market. The Product Owner (who owns the backlog) focuses on building
features prioritized as part of the digital strategy and what can bring revenue
or value for the enterprise.

Products add to the brand value and evolve over a period. You can read more
about the product-centric model: https://docs.microsoft.com/en-
us/learn/modules/introduce-foundation-pillars-devops/4-explore-second-
foundation.

Pillar – architecture

In Chapter 3, Architecture Principles and Styles, and Chapter 4, Assuring the
Quality of the API Service (or Product), we discussed how the architecture of
a solution is dependent on the non-functional requirements or qualities that
must be met. Hence, the team must create backlog items for all such
requirements. Some of them get addressed in the design, and the remainder
has to be handled through the implemented solution.

You can read more on the architecture pillar here:
https://docs.microsoft.com/en-us/learn/modules/define-foundation-pillars/2-
explore-third-foundation-pillar.

Pillar – technology

One of the crucial enablers for DevOps is the list of tools and technologies
used by the team to implement the various processes and practices. GitHub
and Azure DevOps bring an amazing experience for the development

https://docs.microsoft.com/en-us/learn/modules/introduce-foundation-pillars-devops/4-explore-second-foundation
https://docs.microsoft.com/en-us/learn/modules/define-foundation-pillars/2-explore-third-foundation-pillar

community. The toolset is robust and caters to most requirements.
Additionally, Azure provides a wide range of other services to derive insights
around topics such as security, monitoring, and deployments.

Hence, teams must be thorough with their usage of the various tools to
maximize the benefit derived from their DevOps practices.

You can read more about the technology pillar here:
https://docs.microsoft.com/en-us/learn/modules/define-foundation-pillars/3-
explore-last-foundation.

In the next section, we will review a sample approach of how project teams
can track important DevOps-related initiatives as a project backlog.

Tracking DevOps initiatives in the backlog
All initiatives and activities performed as part of DevOps must be tracked
using the backlog. This is the only way that effort can be prioritized within
the stipulated timeframe to accomplish the desired goals.

As an example, we have demonstrated how easily you can capture these
initiatives in the form of a backlog under an epic within Azure DevOps:

https://docs.microsoft.com/en-us/learn/modules/define-foundation-pillars/3-explore-last-foundation

Figure 7.11 – Tracking DevOps activities as a backlog in Azure DevOps

Tracking everything as a backlog will offer the ability to prioritize tasks for
the available capacity. If it's not in the backlog, it will never get done.

Summary
In this chapter, you understood the importance of having the right set of
DevOps practices. DevOps is a combination of people, processes, and
technology. So, enterprises must establish the right mindset and orientation to
go about implementing the practices with due diligence. It's crucial to have a
vision and foresight as the results will be seen in the long term. There has
been sufficient research already conducted in this space and there is guidance
available for teams to absorb, learn, and march forward in the right direction.

All developers must transform themselves into DevOps engineers, to equip
themselves with the concepts and practices that are necessary to master to
build solutions for the cloud.

In the next chapter, we shall look at some of the tools that are useful for
designing, building, and testing API-led architectures.

Further reading
DevOps Dojo White Belt foundation documentation:
https://docs.microsoft.com/en-us/learn/paths/devops-dojo-white-belt-
foundation/

O'Reilly book on DevOpsSec:
https://www.oreilly.com/library/view/devopssec/9781491971413/

Data-driven DevOps metrics by Gartner:
https://www.gartner.com/en/documents/3760663/data-driven-devops-use-
metrics-to-guide-your-journey

https://docs.microsoft.com/en-us/learn/paths/devops-dojo-white-belt-foundation/
https://www.oreilly.com/library/view/devopssec/9781491971413/
https://www.gartner.com/en/documents/3760663/data-driven-devops-use-metrics-to-guide-your-journey

Accelerate: The Science of Lean Software and Devops: Building and
Scaling High Performing Technology Organizations:
https://www.holistics.io/blog/accelerate-measure-software-development

Scaled Agile framework for Lean enterprises:
https://www.scaledagileframework.com/

Git branching strategies for your team: https://gitential.com/git-
branching-strategies-for-your-team-how-to-choose-the-best/

Git branching guidance: https://github.com/MicrosoftDocs/azure-devops-
docs/blob/master/docs/repos/git/git-branching-guidance.md

Canary deployment strategy for Kubernetes:
https://docs.microsoft.com/en-
us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?
view=azure-devops&tabs=yaml

Value stream mapping reference: https://tallyfy.com/value-stream-
mapping

Introduction of DevOps Dojo:
https://devblogs.microsoft.com/devops/intro-of-devops-dojo/

https://www.holistics.io/blog/accelerate-measure-software-development
https://www.scaledagileframework.com/
https://gitential.com/git-branching-strategies-for-your-team-how-to-choose-the-best/
https://github.com/MicrosoftDocs/azure-devops-docs/blob/master/docs/repos/git/git-branching-guidance.md
https://docs.microsoft.com/en-us/azure/devops/pipelines/ecosystems/kubernetes/canary-demo?view=azure-devops&tabs=yaml
https://tallyfy.com/value-stream-mapping
https://devblogs.microsoft.com/devops/intro-of-devops-dojo/

Section 3: Deliver Business Value for a
Modern Enterprise
This last section will help you understand how IT strategies must be aligned
with the core vision of the company, as set forth by the executive team, to
thrive as a digital business in this ever-growing competitive landscape.

This section includes the following chapters:

Chapter 8, API-Centric Enterprise Integrations

Chapter 9, API as a Monetized Product

Chapter 8: API-Centric Enterprise
Integrations
Enterprises and their technology uses have been evolving constantly since the
launch of cloud technologies. This has resulted in the need to develop
integration interfaces to support interoperability across various systems and
applications. The adoption of API-led architectures is vital to the success of
these Enterprise Application Integration (EAI) scenarios. API solutions
can revolve around business entities or domain models, thereby enabling
standardization across all the integrating parties.

The purpose of this chapter is to take a deeper look into some real-world
enterprise integration scenarios and explore how the Azure Integration
Services offering can be utilized to build modern API-based integration
platforms. Most of the popular players in the Enterprise Resource Planning
(ERP) space, such as Microsoft Dynamics, SAP, Oracle, and TIBCO, are
adopting industry-standard protocols and patterns for their interfaces as well.
Hence, enterprise solution architectures are increasingly shifting toward
standardization, as the maintenance and upgrading of standardized interfaces
is simpler than for custom-built solutions.

In this chapter, we are going to cover the following main topics:

Exploring EAI

The rise of Integration Platform as a Service (iPaaS)

Implementing EAI patterns using iPaaS

API management

Understanding the Azure Integration Services offering

By the end of this chapter, you will be able to design EAI workflows in
Azure. You will also develop a good understanding of the importance of API-
centric solutions for various enterprise integration patterns. Moreover, you
will learn how to make use of Azure services such as API Management,
Logic Apps, Service Bus, and Event Grid to make the right implementation
choices for your iPaaS platform requirements on the Azure cloud.

ENTERPRISE INTEGRATION PATTERNS
Enterprise integration patterns are established patterns or messaging flows that are used to
exchange information across two different software systems within an enterprise. These
systems can be either internal or external to an enterprise. You can read more about
enterprise integration patterns here: https://www.enterpriseintegrationpatterns.com/.

Exploring EAI
EAI typically involves a variety of products and technologies, making EAI
complex to achieve. Also, besides the technical challenges, the complexity of
the organizational structure and any associated IT management strategies
brings further challenges to the situation. The main causes of failure to
achieve EAI are the constraints of cost and insufficient tooling support to
orchestrate the integration workflows. Most legacy applications have limited
support for integration models.

However, over time, certain patterns and standards have been established to
streamline integrations. The adoption of API-led architectures has allowed
application developers to open up legacy applications that were otherwise
difficult to integrate with. The domain of EAI has gained popularity among

https://www.enterpriseintegrationpatterns.com/

enterprise architects, as they have found solutions to tackle integration and
interoperability challenges across different types of applications.

Key initiatives toward a digital enterprise

The COVID-19 pandemic brought conventional businesses almost to a
standstill. Enterprises that had an online presence were able to still stay in
business and stay connected with their customer base. Traditional enterprises
took the brunt of dwindling sales and losses. Hence, it has become
abundantly clear that enterprises have to focus on key businesses drivers such
as improving their business agility, introducing multiple channels of
distribution, creating differentiated services, and offering the ability for
customers to connect using devices of their choosing.

So, for an enterprise to become a truly digital enterprise, they must prioritize
the following initiatives to transform themselves:

Converge on the ability to connect key apps to enterprise data.

Build lightweight mobile apps that connect with business logic backend
APIs.

Establish processes that allow devices to communicate with the cloud and
vice versa (using the Internet of Things, or IoT).

Offer self-service API subscription management through a developer
portal.

Ensure the end-to-end security of data during transit and storage.

Use flexible delivery models to meet specific business needs.

In the next section, you will find strategies to open up a legacy application
using an API-centric solution approach.

Modernizing legacy applications using
APIs

The term legacy application refers to systems that are old and can easily be
replaced by newer products or technologies. However, it may not be
straightforward to change them if they see enterprise-wide usage. As more
modern applications are developed and more API-led strategies are adopted,
it is becoming imperative to allow interoperability with legacy applications.

The following are a few ways in which legacy applications can continue to be
used alongside modern applications:

Develop a wrapper API (REST or RPC) to internally connect to legacy
systems. That way, all new applications can follow the modern way of
API-led connectivity.

For systems that act as master data stores for an enterprise, develop a
layer of data services (accessible over HTTP). These services can be
consumed by applications that require access to the master data catalogs.

Refactor and rehost the code of the legacy system as a microservice that
is exposed through an API. This type of migration is expensive but offers
more flexibility and performance, which is ideal if the legacy system is
business-critical in nature.

In the next section, we will review some common API use cases by industry.

API use cases in the enterprise

Based on the size of the enterprise and product offerings, there may between
a dozen and hundreds of public and private APIs. With the adoption of
microservices architectures, these numbers can easily go higher. The greater
the granularity, the better the management life cycles of these APIs.

While API requirements vary by industry, API platforms are generally
indispensable as they make information exchange seamless. Let's review
some of the common use cases across various industries:

Retail: Retailers use APIs for inventory management, sales, invoicing,
packing and shipping products, managing customers and online stores,
and even collecting customer feedback.

Supply chain: Most manufacturers need to allow integrations with their
internal ERP systems. Furthermore, they must decouple their business
data from the applications that generate it.

Financial: APIs can be used to manage everything from customer
accounts and ledgers to online bill payments and transfers. Financial
systems require highly secure and reliable API systems. They require
omnichannel access to customers' financial data.

Healthcare: APIs can offer access to patient information data to other
providers or insurance companies for more automated bill processing.
Healthcare has many uses for API platforms when it comes to providing
efficient and effective patient care.

Transportation: APIs are used for geo-mapping to provide real-time
updates en route, data on the availability of transport vehicles, predicted

times of arrival, and other analytics.

Government: APIs are used for authorized access to public records, the
raising of complaints, citizen utility services, and tax records. APIs can
help citizens to interact with the government and receive information in a
timely manner.

You have seen that APIs have widespread application across various
industries. In the next section, we will discuss the benefits of iPaaS platforms
hosted on the cloud and why enterprises can use them for all integration
requirements.

The rise of iPaaS
Cloud adoption is on the rise, and most modern enterprises have started
investing in building a cloud-based iPaaS solution for connectivity across
applications, systems, and platforms on the cloud and on-premises. This
allows building loosely coupled integration flows without needing to deploy
any middleware applications. Let's take a closer look at what an iPaaS
platform is.

What is an iPaaS platform?

To put it in simple terms, an Integration Platform as a Service or iPaaS
platform is a suite of services deployed on the cloud to enable the onboarding
and execution of integration flows that connect various internal and external
systems hosted on the cloud, or even on on-premises networks, using
industry-standard protocols.

The basic features of an iPaaS platform include the following:

Provide communication protocol connectors (for HTTP, SFTP, AS2,
AMQP, and more).

Support application connectors, including SaaS and on-premises
applications.

Handle data formats such as JSON or XML and data standards such as
EDIFACT and HL7.

Orchestration and routing of messages.

Data validation and transformation.

Monitoring and insights.

Full API life cycle management.

Tools for the development and deployment of services.

Initially, you may start with simple integrations and slowly expand on your
integrations portfolio to include complex and mission-critical flows.

Types of integrations

iPaaS platforms allow seamless data exchange within the organization and
without, while ensuring security and data privacy controls. iPaaS platforms
have great potential and must be made a part of the core business strategy.
They act as a bridge between the consumer or partner applications and
internal systems while offering a hassle-free integration experience. As the

integrations are developed using industry-standard protocols and patterns,
their reach can easily be maximized.

There are three classifications of integrations:

Application-to-application (that is, EAI), or Point-to-Point (P2P)

Enterprise Service Bus (ESB)

Business-to-Business (B2B)/Electronic Data Interchange (EDI)

Depending on the type of industry and the IT maturity of the enterprise, one
or more of these patterns will be used.

Benefits of iPaaS

Over the past few years, there has been a gradual shift toward the adoption of
SaaS-based solutions in most large enterprises for various business process
workflows. The key driving factor has been the ease of use and
standardization available, which is lacking in custom line-of-business
applications.

Additionally, there has been demand for a hybrid cloud setup, wherein the
business has the flexibility to onboard newer workloads on the cloud while
still managing legacy applications on-premises with seamless and highly
secure integration between the two, using virtual networks, ExpressRoute, or
site-to-site VPN topologies.

This created an opportunity for cloud-based integration channels as
enterprises did more business with their partners and vendors. As an
outcome, iPaaS platforms started gaining popularity as such solutions can be

quickly deployed using cloud-native capabilities, thereby reducing the time
needed to onboard integration workloads.

The primary benefits of an iPaaS platform for an enterprise can be broadly
classified into external and internal benefits. Each category is explained
briefly in the following sections.

External benefits

External benefits refer to the experience of the consumers (customers,
vendors, or business partners) who integrate their existing apps with the
enterprise or consume their digital services using published interfaces.
Businesses are investing in technology and increasing their digital footprint.
Hence, consumers can benefit immensely from iPaaS platform offerings in
several ways.

The external benefits offered by iPaaS platforms can be broadly summarized
as in the following sub-sections.

Integrated single solution

iPaaS platforms generally encapsulate all the underlying complexity behind
any specific integration flow. Hence, consumers needn't worry about the
technologies used by the enterprise or their associated complexities. All they
have access to is a centralized platform solution that is made of standardized
protocols and schemas. This makes the experience of all consumers
consistent and uniform, making it quite convenient for them to connect to and
reap the benefits of the platform.

Central repository of data

For consumers, iPaaS platforms act as the entry-point of access to a central
repository of data. This is because all data services are exposed using the
iPaaS platform. Hence, the discovery of and access to any enterprise dataset
is organized in an easy-to-interpret manner. This makes it quite useful for all
consumers.

Transparent information exchange

As consumers have access to a shared data repository, all members receive
the same information when requested. Hence, there is total transparency in
information exchange, thereby preventing any misinterpretation. Also, once
submitted, data is persisted in the shared data store.

Improved business workflow

The use of multiple tools and technologies often introduces additional
complexity that impacts business workflows. The users of the system are
forced to make use of multiple tools to get a task done. This results in delays
impacting productivity. An iPaaS solution eliminates this problem as it offers
a more efficient environment for business process flows. Also, automated
monitoring and alerting will improve the overall operations life cycle.

Internal benefits

Within an enterprise, iPaaS platforms are also utilized internally by various
business units for information exchange to facilitate business processes. The
benefits derived by the business through the internal usage of iPaaS platforms
are known as internal benefits. The usage of a common set of tools within
an enterprise increases the overall efficiency of business workflows.

The primary internal benefits of using an iPaaS platform are as follows.

Avoidance of departmental silos

Large enterprises, without centralized IT management, invariably end up with
different tools for their integration requirements. This results in the formation
of departmental silos as data resides in disparate systems. This formation of
islands of data stores is detrimental to the organization as there is no easy
way to derive end-to-end business insights from the data saved in these
systems.

Robust and centralized iPaaS platforms can eliminate these silos. Teams are
forced to use the same standards for integration and data exchange, thereby
reducing the need to build duplicate systems for the same data. This makes
the data easily accessible to all stakeholders within the organization to
visualize insights according to needs.

Near real-time processing

By adopting efficient message processing strategies, iPaaS platforms can
handle API requests faster, thereby providing almost instantaneous access to
processed data. This removes any delays due to manual processes, and
business rules can be easily automated to handle the data that gets submitted
to the platform.

Increased rhythm of business

iPaaS platforms prevent data loss, thereby ensuring that all information stored
in the systems is accurate and up to date. This helps in achieving an increased

rhythm of business as all decisions are based on true facts as presented by the
underlying data.

Centralized management

As explained earlier, iPaaS platforms act as a single window for the
discovery and usage of data services. This improves the overall management
of IT systems as the data is managed centrally, thereby adhering to IT best
practices.

Reduced or optimized operations cost

Managing a wide spectrum of software systems adds to the overall operations
cost of maintaining them. iPaaS platforms reduce the need to create duplicate
systems that do the same thing. The cloud resources used by these platforms
can be shared, and hence their usage will be more optimal due to
multitenancy.

In large enterprises, IT can own the iPaaS infrastructure and then cross-
charge business units using a pay-per-use model. This will offer a cost
advantage to the business units, as for them, the ROI can be utilized almost
instantly.

Improved security and compliance

Security and compliance go hand in hand whenever it comes to managing
data. Consistent implementation of the policies and guidelines is always a
challenge. Different stakeholders have different understandings of the rules.

Hence, by having a centralized iPaaS platform, compliance requirements can
be better managed.

Security threats are ever-increasing, and specialized skills are required to
secure a platform. iPaaS solutions offer an advantage here as the ownership
of security lies with a single team that owns the platform. It is certain that
compliance will be consistently applied across the shared iPaaS platform.

In the next section, we will look at a typical iPaaS architecture for the Azure
cloud.

iPaaS architecture for the Azure cloud

Azure offers a wide variety of services that can be used to build an iPaaS
platform. A high-level conceptual view of the iPaaS architecture in Azure
follows:

Figure 8.1 – Conceptual view of the iPaaS architecture of Azure

The basic foundational blocks of the iPaaS platform comprise the following:

An API management layer hosting the B2B and B2C public APIs. These
APIs can support a variety of protocols according to industry standards.

A business integration services layer containing the core business logic
for data input validations, rules execution, and transformation to
canonical form.

Backend connectors that allow data to be routed to the respective target
destination. These systems can be different, hence the connectors offer
the ability to route the data to multiple destinations as per any
requirements.

An iPaaS platform acts as the centralized integration layer for an enterprise
and offers connectivity across a wide variety of consumer applications,
external or third-party services, and even other Microsoft clouds such as
Office 365 or Dynamics 365. Even legacy workloads residing on on-premises
data centers can be easily connected and accessed.

A simplified view of a typical iPaaS pipeline is as follows:

Figure 8.2 – Typical iPaaS pipeline for an enterprise

You have seen that data consumers (both external and internal) can access
data produced by a variety of applications using centralized data processing
and access pipelines hosted by an iPaaS platform.

In the next section, we will study the implementation of iPaaS alongside EAI
patterns.

Implementing EAI patterns using iPaaS

EAI solutions typically target the following primary application integration
patterns:

The goal of this pattern is to replicate the data changes that occur in one
application to other applications that must be notified about the changes. This
will ensure that all systems are updated with the latest information. For
example, when a customer updates their information in, say, a CRM system,
the changes are updated in billing systems or other systems that make use of
customer data:

Data consistency integration:

Figure 8.3 – Data consistency integration pattern

This is the most common integration pattern among all EAI flows. An end-to-
end business workflow execution may involve multiple systems or

applications that are mutually independent, each having its own specific
function. These applications will take part in the various steps of the business
workflow, wherein the outputs from one system can serve as input to the
other systems.

Typically, these systems belong to specific departments or organization units,
and they execute the respective sub-processes with the information available.
For example, in a manufacturing scenario, when a purchase order is received,
it may trigger workflows for the Packaging department and the Billing and
Invoicing departments to create the invoice. Once a payment is received for
the purchase order, the Packaging department is told to ship the order:

Business process-based integration:

Figure 8.4 – Process-based integration pattern

This type of integration is used in scenarios where the target application
comprises multiple sub-systems. The initiator (source) of the data flow is
notified of the success of the operation only when all the underlying
composite blocks of the target application are completed successfully. These
types of flows require careful planning as data must be maintained in a
consistent and correct state across the various applications that are involved
in the flow. Composite applications can fully encapsulate a business process
or be a step in a multi-step process flow:

Composite application integration:

Figure 8.5 – Composite application integration pattern

In the next section, we will review the API management solution capabilities
that any iPaaS platform must have.

API management
iPaaS platforms are never complete without an API management solution.
The API management layer offers discovery and access to the list of

published APIs that have been activated for the integration flows.

There are five main capabilities of an API management solution. They are as
follows:

Figure 8.6 – API management solution capabilities

These capabilities are briefly described in the following sections.

API gateways

An API gateway acts as the entry point for all your APIs. It provides the
infrastructure necessary to host and manage the high availability of the public
endpoints.

An API gateway regulates the way that consumers access the published APIs,
with or without authentication. It protects the data accessible through the API
services by preventing any unauthorized access. These gateways make the
consumption of the APIs easy and simple. As an outcome, enterprises
achieve reduced integration time and enhanced customer experience through
the quick onboarding of developers, partners, and subscribers for the API.

API publishing, control, and governance

API management solutions must support the publishing of APIs. Basically,
this means that APIs can be easily added to an API catalog and published for
use by external and internal consumers. APIs can be added by uploading a
standard specification file, such as OpenAPI Specification, or using an
administrative interface.

The API management features like rate limiting (traffic throttling) and load
balancing helps avoid disruptions to your API processes. The incoming
requests are throttled by rate limiting; it limits the number of API requests
made to a said API in a given time frame.

Load balancing, on the other hand, helps you leverage a number of gateways
for a single API; this distributes the incoming requests across the various
gateways. Both these features target good response times and reduce the
overall error rates or failures of the APIs.

An API management solution also provides secured and controlled access to
your APIs. For example, developers or consumers will be issued access or
subscription keys that must be passed using request headers or query string

parameters while invoking the APIs. In the absence of these keys, users will
be denied access to API operations.

Developer portal

The API developer portal is primarily targeted at the developer community,
who will build applications that consume the list of published APIs. A robust
and resourceful developer portal provides developers with the necessary
resources to rapidly create cloud applications or services with their APIs.
Typically, these include the following:

API catalog

Documentation about the API operations and their usage

Wiki pages or other content

Assets such as videos, quick starts, and development kits

Developers can quickly go through all the information and understand how to
make use of the APIs in their projects. A developer portal can help drive
innovation and increase the re-use of your APIs. By extending the
capabilities of the developer portal, enterprises can achieve self-service-based
paid distribution channels, thereby increasing the revenue generated through
the iPaaS platform.

API versioning and life cycle management

Managing the life cycles of APIs is equally as important as the other features
we've been talking about, especially because new enhancements or features

are constantly being rolled out. Hence, an API management solution provides
all the tools and infrastructure needed for planning, designing, implementing,
testing, publishing, operating, consuming, maintaining, versioning, and
retiring your APIs.

A life cycle management function enables the version control of APIs,
ensuring backward compatibility to avoid disruption to any existing processes
and allowing developers access to the latest versions of services to implement
them in their applications. API life cycle management offers the ability to
boost your digital innovations by ensuring consistency across all the API
development teams within an enterprise.

Analytics and metrics

An API management solution provides useful analytics based on the
monitoring and telemetry data captured by the tool. This is important to
understand and analyze the various Key Performance Indicators (KPIs) or
metrics for the API landscape.

Various dashboards and charts can be prepared using this metrics data to
detect issues or security threats, measure performance, and analyze
exceptions and availability challenges. Furthermore, reporting on usage
trends, user segmentation, the geo-distribution of consumers, and more offers
business insights into the target user base to help the enterprise plan for
marketing activities. API insights play a vital role in the overall API strategy
for an enterprise.

AZURE API MANAGEMENT

Azure API Management (PaaS) offers a robust API management solution for your iPaaS
solutions on the Azure cloud. We will briefly discuss the capabilities of Azure API
Management in subsequent sections. However, you can read more about it here:
https://azure.microsoft.com/en-in/services/api-management/.

In the next section, we will review the Azure Integration Services offering,
which comprises a set of Azure services that can be used to build your
integration flows.

Understanding Azure Integration Services
Microsoft provides Azure Integration Services for enterprises to build iPaaS
solutions on the Azure cloud. The following has been said regarding
Microsoft's place in Gartner's Magic Quadrant:

https://azure.microsoft.com/en-in/services/api-management/

Microsoft is placed in the leader quadrant for the enterprise integration
platform as a service space.

The amount of services and their range of configuration and connector
options makes Azure Integration Services a rich offering that differentiates
Microsoft from other competitors in the market. Azure provides four core
things to form the critical features required to accomplish enterprise
integrations:

The ability to publish API endpoints for discovery and use

The ability to create and run integration logic business workflows
(orchestration)

The ability to design and implement loosely coupled integrations by
using a messaging stack

The ability to handle communication via events to trigger processing
pipelines:

Figure 8.7 – Azure Integration Services

You can read more about Azure Integration Services here:
https://azure.microsoft.com/en-us/product-categories/integration/.

CODE-BASED CUSTOMIZATIONS

https://azure.microsoft.com/en-us/product-categories/integration/

Azure Functions is used to build extensions or code-based logic that can be invoked either
directly or from Logic Apps.

Let's explore the iPaaS building blocks of Azure in more detail in the next
section.

iPaaS building blocks of Azure – explained

The four main components that are used to build the iPaaS platforms in
Azure are as follows.

Azure API Management

Azure API Management (APIM) is a managed PaaS offering that allows
organizations to publish APIs to both internal and external consumers. With
Azure APIM, you can publish APIs that can be hosted anywhere. Basically, it
allows for the decoupling of actual API hosting from a published gateway
that acts as a single entry point (façade layer) for the full landscape of APIs
published by the enterprise:

Figure 8.8 – Azure APIM – Overview

As a PaaS solution, it is basically composed of three parts:

API gateway: This serves as the infrastructure hosting the load-balanced
endpoints that serve the different API requests. When using a virtual
network-based topology, the gateways can be deployed to multiple Azure
regions, thereby improving the availability of the service. The key
functions of APIM are as follows:

a) Accept API calls and route them to the respective backend services.

b) Verify API keys, OAuth tokens, certificates, and so on.

c) Enforce quota usage and rate-limiting throttles.

d) Handle advanced policy configurations such as response caching,
request and response modifications, and more.

API publishing and configuration management (directly through the
Azure portal): The Azure portal provides the ability to directly create
and configure the API, along with other configuration options. Using the
Azure portal, you can do the following:

a) Import APIs using OpenAPI Specification files (YAML/JSON) or
define the API schema directly.

b) Create a logical grouping of APIs as products. An API can belong to
one or many products.

c) Configure and use various policies such as quotas or transformations.
The policies can be applied at the product, API, and even operation level.

d) Specify authentication and access for end users.

e) View various built-in analytics reports. Configure additional logging as
applicable.

API developer portal: This serves as the main portal for developers who
will consume the APIs. The API developer portal can be used as a
branded website. The main features are as follows:

a) Display the API documentation and allow developers to try out the API
operation to check whether it's working.

b) Manage user subscriptions and keys.

c) Review API usage and other metrics.

d) View generic content as published by the administrators.

NOTE
You can read more about Azure APIM here: https://docs.microsoft.com/en-us/azure/api-
management/.

Also, here is a reference architecture for Azure APIM for a very basic enterprise
integration: https://docs.microsoft.com/en-us/azure/architecture/reference-
architectures/enterprise-integration/basic-enterprise-integration.

Logic Apps

Azure Logic Apps is another useful PaaS offering that brings in the power of
orchestration and automation for your no-code workflows. Each logic app
implements a workflow that represents a business process or just a pure
integration scenario. Logic Apps can be used to connect two different
systems or even two different applications.

A logic app comprises a trigger and series of steps that can be either loops,
conditional statements, or actions. A sample representative view of the

https://docs.microsoft.com/en-us/azure/api-management/
https://docs.microsoft.com/en-us/azure/architecture/reference-architectures/enterprise-integration/basic-enterprise-integration

designer is shown here:

Figure 8.9 – Logic app designer

The rich capabilities supported by Logic Apps include the following:

Easily create workflows using the (web) designer.

Support for a large number of connectors, including SaaS and on-
premises connectors.

Highly scalable and reliable; build mission-critical workflows that can
run 24x7.

Workflows can be version-controlled using ARM templates and DevOps.

Enterprise integration capabilities are available through integration
accounts.

Automate business processes and connect on-premises, hybrid, and cloud
applications.

Leverage Azure Machine Learning and Azure Cognitive Services
while building smart integrations.

Building integration workflows using logic apps is really fast and enterprises
can benefit hugely from using the large number of connectors that are
available.

Service Bus

Azure Service Bus is used in application integration scenarios where
asynchronous communication techniques are preferred. Communication
happens using messages:

Figure 8.10 – Azure Service Bus Overview page

The salient features supported by Azure Service Bus are as follows:

High availability and disaster recovery, including geo-replication of the
namespaces

Queue semantics and ordered delivery of messages, that is, First-In-
First-Out (FIFO)

Supports rich filters while reading messages

Push-Pull (queue) or Publish-Subscribe (topic) models

For enterprise messaging scenarios, you can choose between queues and
topics depending on the nature of the integration pattern.

A queue is like a FIFO message delivery mechanism from a sender to a
receiver. Basically, the sender will deliver messages to a queue, which will
then be received by a single consumer to subsequently process the message.
There may be multiple consumers of a queue, but each message will be
delivered to one consumer only:

Figure 8.11 – Queue with multiple messages

These are the key features:

Ordered message delivery through sessions

Stores the message until read by the receiver

Preferably used in point-to-point messaging scenarios, wherein the sender
writes the message to the queue, and after the receiver has read the
message, it is deleted from the queue

Topics and subscriptions are used in scenarios where the same message
must be delivered to multiple receivers simultaneously in a one-to-many form
of communication. Here, the receivers subscribe to a particular topic. As the
messages are received for a specific topic, it is forwarded to all subscriptions
registered with the topic:

Figure 8.12 – Topic with multiple subscriptions and messages

Here are the key features:

Supports delivery of the same message to multiple subscribers.

Used in publish-subscribe scenarios, wherein the sender writes the
message to the topic, and the topic delivers the message to the
subscribers.

Multiple independent subscriptions are possible, based on message
property filters or rules.

Read more on when to use what here:
https://www.serverless360.com/blog/azure-service-bus-queues-vs-topics.

Event Grid

Azure Event Grid is another PaaS offering that enables integration scenarios
involving messages. It operates on the event publisher/event subscriber
pattern. Basically, event publishers are systems that send notifications
regarding any changes happening in them. These notifications or messages
are then routed to the event subscribers, which receive the message and then
execute additional actions based on the update received.

You can read more about the concepts of Azure Event Grid here:
https://docs.microsoft.com/en-us/azure/event-grid/concepts.

A brief overview is depicted here:

https://www.serverless360.com/blog/azure-service-bus-queues-vs-topics
https://docs.microsoft.com/en-us/azure/event-grid/concepts

Figure 8.13 – Azure Event Grid overview

The key concepts you need to remember are as follows:

Events: What happened

Event sources: Where the event had originated

Topics: Where the publishers will send the events

Event subscriptions: Registrations based on the type of events to receive

Event handlers: The app or service that receives the event and handles it

In the next section, we will study how to make use of the various components
of Azure Integration Services to develop integration flows.

Using Azure Integration Services

Azure Integration Services has many applications within an enterprise,
especially in building EAIs. Some of the common scenarios include the
following:

Interconnecting various enterprise apps within an organization (using EAI
flows)

B2B/trading partner integrations (using EDI flows)

Integrating line-of-business applications with SaaS products/services

Event publishing scenarios/IoT-based integrations

The following are a few examples of reference architectures.

Extensible EDI flows

Electronic Data Interchange (EDI) is a commonly used integration pattern
in manufacturing, wherein trading partners send orders, invoices, credit notes,
and so on for reconciliation with the enterprise's back office, warehouse, or
ERP systems:

Figure 8.14 – Extensible EDI flow integration

You can read more about EDI integrations here:
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-
integration-x12.

Command message

The command message pattern is generally used to invoke workflows or
state changes in a system by sending a command after the occurrence of a
business event or state change in another system. It is the simplest type of
message-based integration:

Figure 8.15 – The command message integration pattern

Message routing/event messaging

Event messaging or message routing patterns are used in scenarios wherein
a large stream of messages is sent by event producers and must be routed to
appropriate destinations depending on some filter criteria. The event sources
write to a common endpoint, and then the Event Grid system routes to the
respective subscribers listening to the topics. The event handlers, configured
per subscription, route the event messages to the appropriate destination
applications:

https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-integration-x12

Figure 8.16 – Event messaging integration pattern

The patterns and scenarios listed here are only a limited subset to demonstrate
how easily you can build integration flows in Azure. For a more detailed
study, please go through the references provided at the end of this chapter.

Summary
In this chapter, you have learned about the role and importance of API-
centric architectures for enterprise integration scenarios. You have also
studied how enterprises can benefit from implementing iPaaS platforms on
Azure that will enable them to modernize their EAI flows and connect the
legacy workloads with a larger ecosystem of applications, including SaaS and
cloud-native applications.

By now, you must be familiar with using Azure APIM as the single entry
point for all your API-based integration workflows. You should also be able

to design and implement mission-critical and highly reliable integrations
using various Azure resources such as Logic Apps, Service Bus, and Event
Grid. The flows can be implemented as data processing pipelines.

In the next chapter, we will extend the concepts presented so far and explore
strategies to monetize your API solutions.

Further reading
Enterprise integration patterns using Azure Integration Services:
https://platform.deloitte.com.au/articles/enterprise-integration-patterns-
on-azure-intro

Reference on enterprise integration patterns on Azure:
https://platform.deloitte.com.au/articles/enterprise-integration-patterns-
on-azure-platform

Architect API integration in Azure: https://docs.microsoft.com/en-
us/learn/paths/architect-api-integration/

Azure Integration Services: https://azure.microsoft.com/en-us/product-
categories/integration/

iPaaS benefits: https://blog.dreamfactory.com/ipaas-benefits-8-reasons-
why-businesses-are-flocking-to-integration-platform-as-a-service/

The Ultimate Guide to iPaaS: https://blog.hubspot.com/marketing/ipaas-
guide

Send and receive X12 messages: https://docs.microsoft.com/en-
us/azure/logic-apps/logic-apps-enterprise-integration-x12

https://platform.deloitte.com.au/articles/enterprise-integration-patterns-on-azure-intro
https://platform.deloitte.com.au/articles/enterprise-integration-patterns-on-azure-platform
https://docs.microsoft.com/en-us/learn/paths/architect-api-integration/
https://azure.microsoft.com/en-us/product-categories/integration/
https://blog.dreamfactory.com/ipaas-benefits-8-reasons-why-businesses-are-flocking-to-integration-platform-as-a-service/
https://blog.hubspot.com/marketing/ipaas-guide
https://docs.microsoft.com/en-us/azure/logic-apps/logic-apps-enterprise-integration-x12

Chapter 9: APIs as a Monetized Product
By definition, a product is a service or an item that can be in cyber form as
well. It can be sold at a price in the market that is competitive and
appropriate, depending on the nature of the item. For an enterprise, APIs are
the medium by which innovation is brought to the marketplace. They want to
capitalize on the opportunity by introducing new products and services and
by establishing new ideas, differentiating the business from the competition.

Businesses rely heavily on digital distribution channels to market and sell
their products and generate revenue. APIs foster a growth outlook as
businesses can expand beyond their standard operating models. Building and
managing API platforms has been recognized as a core enterprise strategy.
The APIs provide access to the business assets of an enterprise. Hence, this
API economy targets revenue generation through direct or indirect use of the
API ecosystem that provides or processes business data.

Organizations have already started exploiting the commercial benefits of an
API strategy. They can easily sell these channels of interaction using an
intelligent pricing model.

The purpose of this chapter is to provide an overview of the concept of the
API as a monetized product. Organizations are heavily investing in API-led
digital assets as they are consumable by any channel or platform.

In this chapter, we are going to cover the following main topics:

APIs as digital assets

Exploring business drivers of monetization

API monetization models

API production in Azure

API consumption – rate limits and quotas

Measuring API consumption

By the end of this chapter, you will understand how to envision API products,
how to devise consumption models, and apply a monetization strategy to
generate revenue from the API investments.

APIs as digital assets
The potential for APIs to be seen as digital assets is huge. Organizations are
constantly evolving business strategies to tap into this opportunity for their
revenue generation. When envisaged with a long-term strategic outlook,
productized APIs can offer a significant advantage over other distribution
channels. Effective monetization strategies with a variety of consumption
models can lead to upselling and cross-selling opportunities for the
enterprise.

By actively monitoring the value derived from their API investments and the
associated business analytics, organizations can establish different business
models to suit the needs of the customer. Self-service, subscription-based
engagements are becoming quite popular these days, especially in the media
and consumer service industries.

Growth of the API economy

Since the inception of Service Oriented Architecture (SOA), there has been
a gradual shift toward decoupling frontend applications from the business
layer, which are getting exposed as APIs. As a matter of fact, APIs are
everywhere today, all-pervasive in the digital experiences that any of us are
engaged in.

The API economy has created a demand in the marketplace for enterprises to
expose business data and services through APIs, with the eventual goal of
generating revenue through them. APIs simplify access to the data and
information in a secured manner. Application developers can easily integrate
with the APIs and build user-focused apps. App developers can pay attention
to building the experience without really worrying about how the API has
been implemented.

The adoption of cloud-based technologies has generated a need for
enterprises to modernize their legacy applications at a rapid pace. The
erstwhile monolith applications are now redesigned or refactored using
microservice API-driven architectures. The rapid expansion in the usage of
mobile computing and IoT has made it imperative for enterprises to adapt to
the market demands and build APIs that allow devices to seamlessly connect
and exchange information.

The API value chain

So far, you have learned that APIs play a vital role in the digital
transformation strategy of any business. The growth of the API economy has
led to a complete paradigm shift in the way enterprises do business with their
partners and customers. The broader objective is to use the power of data to

generate business value within the ecosystem. Let's discuss the key players in
this API value chain in the following section.

Participants in the API value chain

The key participants in the API value chain are depicted in the following
diagram:

Figure 9.1 – Participants in the API value chain

Let's discuss the main participants and the roles they play in the value chain:

API Service Provider: This refers to the organization that exposes APIs
to facilitate the use of the business capabilities or provide end user digital
services. They define the pricing plans and usage guidance for the APIs.
They provide governance over the API platform and manage the
reliability of the service as per the agreed SLAs.

API Consumers or Integrators: This refers to the developers or partners
who consume the APIs directly or build end user applications that
integrate with the APIs. The consumers must follow the rules of
engagement while consuming the APIs. They may require prior
registration with the API provider before being allowed access to the
APIs.

End Users or Customers: This refers to the users of the applications who
receive the benefits of using the API. The users may not be directly aware
of how the APIs are invoked or used, but their usage of the various
capabilities drives the overall consumption of the APIs.

For true value realization of the APIs, all three participants in the value chain
must benefit in one way or another. For the enterprise, having the right
monetization strategy is fundamental to driving consumption and usage.
Consumption drives revenue, leading to the creation of a digital asset.

In the next section, we will review the business drivers of API monetization.

Exploring business drivers of monetization
Enterprises must adopt a mindset of innovation to survive in the market.
Hence, they must be responsive to the demands of the business and create
products that showcase their unique brand and expertise. There are several
reasons for an enterprise to expose business functionality or render a digital
service through an API that can be monetized. The main business drivers for
this approach are explained in the following sections.

Expand the channels of revenue streams

By monetizing APIs, enterprises can create a new opportunity to generate
revenue. APIs can deliver a virtual service or business functionality for a
price. The consumers of the APIs will be charged based on their consumption
of these APIs, and the revenue collected through the use of the APIs will add
to the revenue stream of the enterprise.

Some companies have totally transformed their businesses and sell API
products like Software-as-a-Service (SaaS) products. There is a billion-
dollar market for this. Examples include Azure Cognitive Services, Twilio,
PayPal, and Salesforce. Most of these companies adopt an API-first strategy
while implementing their solutions so that it is easier for them to introduce
API products into the market.

Capture analytics for improved marketing
strategies

Studying user behavior provides useful insights into the segmentation and
preferences indicative of the market they are in. Since data is the new
currency for innovation, many companies have developed APIs that collect
data and gain insights into customer behavior when they use any application.

Companies such as Microsoft and Google offer products that have API
interfaces, which application developers can consume and integrate while
building their own applications. The insights derived from the ingested data
are extremely valuable and crucial to deriving marketing strategies. This
user-generated data can be further augmented using machine learning and

artificial intelligence capabilities to make predictions on the adoption and use
of the applications.

Companies can easily go out of business if they don't pay attention to
improving the quality of their services based on the critical factors that
emerge from the data.

Enhance brand value through customer
loyalty

The brand image of a company is enhanced only when customers stay loyal
and use their products. Customers share their first-hand experience of using
the service, which has a huge influence on other potential buyers. Hence, by
creating APIs that can be easily consumed and used for various business
workflows, enterprises can generate some loyalty toward their platform.

If the companies do not offer public APIs that can be consumed for
integration with their various solution capabilities, customers can easily
switch to competitors who might have a better offering available in the
market.

For example, SAP Ariba is a SaaS product that allows APIs for enterprise
integration purposes. Line of business (LOB) applications can easily
integrate with SAP Ariba using REST APIs. This has conferred a competitive
advantage on SAP, which was previously primarily an on-premises solution.

Foster innovation through new product
capabilit ies

APIs serve as backend services for any web, mobile, or even desktop
application. Enterprises may expose APIs to allow application developers to
integrate with their backend data. This decoupling of UI and backend paves
the way for new capabilities to be offered by the applications that would not
have been possible otherwise.

For example, by consuming the Microsoft Cognitive Services Vision API,
application developers can easily build applications that analyze image data
to extract meaningful information by processing the captured image. Image
recognition has a variety of use cases, starting from, say, face recognition
pattern matching to authorize door entry, to storytelling for paintings in an art
gallery, to creating in-store experience in retail outlets. The possibilities are
endless.

Stay relevant in the marketplace

Most organizations are transforming themselves through digital investment to
stay relevant in the market. As the technology landscape is evolving, the
industry is moving at a rapid pace to bring in new ways of connecting with its
customers. Organizations are adapting to the demands of the market to stay in
the competition. API-based platforms provide the most effective way to
achieve agility and diversify the modes of interaction.

For example, most multiplex theatres allow third-party apps to be integrated
with their APIs. This allows the user to book a ticket from an app of their
choice. While the theatres may charge a nominal fee for such integration, the
app owners can also sell other items through the same channels.

Thus, for an enterprise, all digital initiatives must take into consideration the
business drivers for better alignment and sustainable growth in the long term.
In the next section, we will review the various monetization models that can
be used for your API economy needs.

API monetization models
There are various options when it comes to monetizing your APIs.
Enterprises may choose one or more options, depending on their business
strategy.

The most widely used monetization options are depicted in the following
image:

Figure 9.2 – API monetization models

Let's review each option in more detail.

Free

One of the most common ways to get developers to start using your APIs is
to offer a free tier. There are zero charges to be paid by the consumers while
using your APIs. This model is suitable when the API made available is a
low-value asset or a shared service, and you can rely on other mechanisms to
generate revenue.

For example, application developers can integrate with identity providers
such as Microsoft, Facebook, or Google to implement OAuth-based
authentication within their apps for free. While these APIs are free to use, the
providers can attract many users to register with their platform. This gives
them access to a community of consumers to whom they can reach out to sell
other products through their platforms.

Sometimes, enterprises also put a capacity limit on these free APIs. This
helps them prevent degradation of the performance of the APIs if many hits
are made to the API. This is particularly advantageous for developers when
they are building solutions in the beta stage.

Careful consideration must be taken before making APIs free to use. As
businesses run on profit, alternate revenue streams must be available to
compensate for the operational expenditure on these APIs.

Consumer pays

In this model, the consumer of an API is required to pay as per the rate plan
published by the API service provider. The enterprises levy a charge that is
appropriate to recover the capital and operational expenditure of building and
managing the API business asset.

There are additional sub-models for charging the API consumer:

Figure 9.3 – Pricing options for charging the consumers of an API

Tiered: In this model, the API publishers may define tiers in which the
rate charged to the consumer will vary. For example, there may be no
charges up to a certain limited usage, but when the limit is breached, the
consumers will be charged. Further, the tiers can be such that consumers
can get a discount based on their usage volume.

Most API providers typically implement this model. They use a variety of
naming conventions to define the multiple tiers, such as Basic, Standard,
and Advanced, or even Gold, Silver, and Bronze. The developer
subscribes to the pricing tier that's suitable for their needs. Usually, once
the threshold of consumption for any given tier is reached, the service is
disabled until the next payment cycle, or the service charges have been
paid for by using a top-up mechanism. Optionally, the API service

providers may give an option to automatically switch tiers if the
consumption exceeds the tier's threshold.

Enterprises usually get creative when coming up with pricing plans using
the tiered approach. They attempt to keep the rates optimal to attract the
greatest number of developers to their API platform.

Pay-as-you-go: In this model, the rate charged is dependent on the actual
consumption of the API consumer. This is advantageous for the consumer
in comparison with other pricing models as they only need to pay for
what has been used. However, this pricing strategy works for only a
limited set of features. For heavy usage scenarios, this model may be
quite expensive for API consumers.

In a pay-as-you-go pricing plan, a base rate is defined, which is used to
calculate the charges. For example, let's say that every API request will
be charged at $0.01. So, if the API consumer makes 1,234 requests
overall, then the charge for consumption will be 1234 x $0.01 = $12.34.

For API service providers, offering this model may be risky due to its
unpredictable nature. If the load pattern on the API infrastructure varies
all the time, there may be performance issues. This model requires careful
planning on the service provider side before being included as one of the
pricing options for the API.

Unit-based: In this model, the price is fixed based on a unit-based rate
over a certain period (such as daily, weekly, or monthly). The API service
providers arrive at this rate by taking into consideration the expenditure
that will be incurred for the infrastructure components hosting the API,
and some profit over the cost.

For example, let's say that the API requests will be charged at $0.50 per
1,000 requests daily. This constitutes 1 unit, and the consumers can
purchase one or many units depending on their predicted consumption.

Once the request count reaches the upper limit of units purchased, no
further API calls will be allowed. The consumer will need to purchase
additional units to continue using the service. Hence, this model is also
known as fixed quota.

This model offers uniform and predictable revenue generation for the
service providers. However, developers or consumers suffer a small loss
if the count of API requests is less than the quota allocated.

The consumer pays model requires careful evaluation to arrive at the
appropriate pricing strategy. It is often used as an upgrade to a free offering
to attract customers to a premium membership.

Consumer gets paid

In this model, the consumer of the API receives a monetary incentive for
integrating with the API. This drives the adoption of the API in the
marketplace and encourages more consumption and usage.

Here are the sub-models within this model:

Figure 9.4 – Options for the consumer gets paid model

Let's discuss each of them in detail:

Revenue sharing: In this model, the API consumer is paid a commission
for using the API. The consumer acts like a broker, or an agent, thereby
assisting in increasing the consumption of the API.

The API consumers provide the ability within their app to invoke these
APIs as the user browses through the application.

A typical example is the Google AdSense API. The consumer apps
capture the user behavior with their tool and send all of this information
to the AdSense API.

Affiliate: In this model, the consumer advertises the service provider's
capabilities in their apps or websites. Users visiting the consumer apps
may be interested in the offerings from the provider. Any sales that
happen after that are treated as revenue earned through a reference, and a
portion is paid as commission to the consumer.

Credit to bill: In this model, the provider will give back credits, earned
through revenue sharing or affiliate models, to the consumer on their bill
as discounts. This will reduce the cost for the developer directly as the
bill will be lower. This model is typically followed by a small group of
service providers who interact and integrate through their apps.

As is evident from the options mentioned here, this strategy is a win-win
situation for both the consumers and the API service providers. Hence, this
can be seen as a more lucrative model for the consumers.

Indirect monetization

Indirect monetization is another common scenario, where the revenue is
earned through indirect means without requiring the consumer of the API to
explicitly pay for their API consumption. Most enterprises build and expose
APIs to accomplish specific business goals. These APIs are integrated within
LOB applications or even third-party applications. These applications
generate revenue for the enterprise through the various business scenarios,
resulting in indirect revenue creation through the use of the exposed APIs.

Some common sub-models within this model are as follows:

Figure 9.5 – Indirect monetization models

Let's explain these sub-models in detail:

Brand awareness: Sometimes, companies make certain APIs available
for free to use in any third-party application. These APIs typically strive
to create awareness of its services and products to end users. This way,
brand awareness through directed marketing campaigns can be achieved.

Content acquisition: Companies may also provide APIs that may be
used to add or publish content or datasets. Through this mechanism,
enterprises can acquire content for their business use that can be further
extended by deriving business insights.

SaaS offering: Many software vendors typically also publish an API
layer for all their business applications. By adopting this strategy, they
can easily resell their API services through an SaaS model to businesses
or individual users. This creates more opportunities as the consumers
don't have to purchase the packaged applications.

Internal consumption: APIs can also be developed for internal
consumption within an enterprise. Business units may build customer-

facing applications by using the APIs. This leads to revenue generation
through customer engagement. The business units might have a charge-
back model to recover the cost of managing the APIs. Additionally, the
internal use of the APIs help to improve productivity, reduce errors, and
reduce development costs.

B2B partnership: In a business-to-business (B2B) partnership model,
APIs are used to achieve seamless business integration of the various
workflows. This has been studied in some detail in the previous chapter.
By opening their backend systems through APIs, enterprises achieve
more agility, thereby leading to better coordination and enhanced
partnership for mutual growth and benefit.

In this section, you reviewed the various monetization strategies that can be
used for your API solutions. You must carefully plan and choose the model
that may apply to your specific business context. In the next section, we will
explore how this monetization aspect can be put into action when
implementing and deploying API solutions in Azure.

API productization in Azure
In this section, we will review the high-level approach to creating and
publishing productized APIs using Azure API Management and other
necessary services. An end-to-end solution requires multiple components to
be developed, hence the objective here is to provide a big-picture view of
how to approach your API monetization strategies from a solution standpoint.

NOTE

The following concepts are just a starting point and are not meant to be a comprehensive
solution. You are encouraged to elaborate on the key points and discover additional
requirements that may be required for your specific business context.

Through the next sections, you will learn how to approach your monetization
plans using a good productization strategy. You will also learn what Azure
services need to be considered as part of your solution.

Requirements summary

At a high level, the overall functional requirements can be categorized into
three buckets, namely Productization, Platform Administration, and
Consumer Experience:

Figure 9.6 – High-level categorization of the feature areas

The capabilities within each feature area are explained in more detail in the
following sections.

Productization

The primary focus of the Productization feature area is to identify and define
the monetized APIs, along with their management and selling strategy as
digital products. Hence, it covers capabilities such as identifying variants of
the products and their corresponding mapping to physical assets, a definition
of the pricing and rate plans (along with the necessary metadata), and content
that must be created for driving the consumer experience:

Figure 9.7 – Desired capabilities of Productization

The top-level capability blocks are briefly explained here:

API Products – This refers to the catalog of APIs that will be made
available to the consumers.

Physical Assets – This comprises the actual cloud services that are part
of the specific API product and their corresponding life cycle

management. The operations cost of maintaining these services must be
considered while deriving the pricing plans.

Variants – This identifies the variants of any API product that will be
monetized. Define and create the content (textual, PDFs, images, and so
on) that is required for the marketing strategy. Define the various pricing
plans to make it attractive for the consumers.

Now, let's move on to Platform Administration.

Platform Administration

Platform Administration focuses on the overall hosting, management, and
governance of the API platform, along with the administration of the various
LOB applications/services from an end-to-end solution perspective. The
major focus areas here are subscription management, billing and
invoicing, and generating business insights and analytics to present the
overall health of the service from financial and operational standpoints:

Figure 9.8 – Desired capabilities under Platform Administration

The top-level capability blocks are briefly explained here:

Registration – Identify how users will register with the platform. Define
any approval workflows that are necessary depending on the user
segment.

API Catalogue – Identify the API assets that will be published through
API management. Apply policies to control access and usage of the APIs.
Manage the subscriptions of the users.

Insights and Analytics – Capture telemetry data to generate the various
metrics. Visualize the data using different dashboards (such as Power BI)
to derive the various insights that are required for business and IT
decision-makers.

Billing and Invoicing – Define the workflows related to subscriptions,
order management, billing, and invoicing.

Support – Establish tools and processes to handle support requests.

Next, let's take a look at Consumer Experience.

Consumer Experience

The adoption of the API platform is heavily dependent on the ease with
which consumers can discover the APIs they need, review the specification
and technical content (by browsing through the developer portal), register to
subscribe and pay for their selected product, and then start using the API in
their applications.

The Consumer Experience is largely driven by the brand management and
marketing strategy of the organization. It is recommended that you start small
and make use of end user feedback to improve the value provided by the
solution.

Consumer experience is typically delivered through a web portal and/or a
mobile app. Azure AD B2C can be used to facilitate user registration and
identity management, including making use of social OpenID identity
providers such as Microsoft and Google:

Figure 9.9 – Desired capabilities under Consumer Experience

The top-level capability blocks are briefly explained here:

Product (API) Catalogue – Create the marketplace experience for the
users (both anonymous and registered).

User (Account) Management – Establish the procedures for registration
and login based on the type of user. Include preferences to use existing
social identity providers.

UI/UX – Identify and define experience for the channels that will be
supported for the end user experience. Include multi-device, multi-form-
factor capabilities, along with modern UI design. Enrich the experience
through usability studies.

The capability maps listed earlier can be further expanded to create a more
detailed Product backlog. It is recommended that you analyze this and come
up with your own Epics, Features, and Stories to define your product
roadmap.

In the next section, we will study how Azure API Management and other
services can be utilized to develop a solution catering to your API
productization strategy.

Solution approach

As we saw in the previous chapter, Azure API Management (APIM) is a
robust product offering in Azure that can be used for API governance and life
cycle management strategies. Hence, the solution approach for API

monetization relies heavily on the usage of the native capabilities available in
the APIM managed service. The high-level building blocks for the proposed
solution are depicted in the following diagram:

Figure 9.10 – Solution building blocks

As you can see in Figure 9.10, APIM is the key solution component
supported by additional capabilities that will have to be developed leveraging
Commercial-off-the-shelf (COTS), SaaS, or even custom solutions
depending on their suitability for the business context.

The high-level conceptual view of the end-to-end solution is presented as
follows:

Figure 9.11 – High-level conceptual view

From the conceptual view, we can easily see that there are a few moving
pieces in the overall solution. Hence, technology choices relating to these

pieces must be made to achieve a cohesive experience for end users. In any
enterprise context, some of these pieces must be custom-developed, while
some others can be integrated using a plug-and-play model. In the next
section, we will review a few of the important capabilities that will be
accomplished using APIM.

API products and publishing in APIM

API publishing in APIM involves uploading the OpenAPI specification files
(YAML/JSON) that define the operations and other behavior of the API.

APIM has a feature called Products, which is technically just a logical
grouping of APIs so that a common set of access policies and rules can be
applied. However, it must not be confused with the term API Product, which
is purely a business offering created for the purpose of monetization. In the
following sections, we will cover how to model your APIM products and
APIs design in order to implement the monetization strategy defined for the
corresponding API product.

Let's consider an example to understand this. Say there is an API product
named Quoting Service that comprises three SKUs: Basic, Standard, and
Premium. For simplicity purposes, we will consider that these SKUs differ by
their request limit quotas and associated charges, as shown in the following
table:

So, from a monetization strategy perspective, we have just one API product
(a single backend service) but three different pricing plans.

One of the ways the product and pricing plans can be implemented in APIM
is as follows:

1. Create one API entry for the Quoting Service API using the OpenAPI
Specification files of the backend service.

2. Create three different products within it, namely Quote Service (Basic),
Quote Service (Standard), and Quote Service (Premium).

3. Map the Quoting Service API to the three different products in APIM.

4. Configure settings and policies on the products as per the pricing plan.

Your API now has the requisite configuration to support the various pricing
plans.

The process is depicted in the following diagram:

Figure 9.12 – API Product versus APIM (Logical) Product entry

You can read more about rate limits and quotas here:
https://docs.microsoft.com/en-us/azure/api-management/api-management-
sample-flexible-throttling#rate-limits-and-quotas.

NOTE
Depending on the nature of the API product and its monetization strategy, alternative
permutations and combinations may be explored. You must consider the various factors, such
as subscription management, traffic isolation, rate limits, quotas, and more, while coming up
with the structure.

https://docs.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling#rate-limits-and-quotas

In APIM, the product entries would look something like this:

Figure 9.13 – Product entries in APIM

Observe that Quote Service (Basic) is accessible to Guests. This makes the
API visible to anonymous users in the Developer portal, whereas the
remainder are available only to registered developers.

Subscription management

Developers who want to consume paid APIs must create a subscription and
then pay for the charges as per the pricing plan. The design of the business
workflow for creating a subscription is outside the scope of this book.
However, the net result of the workflow is the generation of a subscription
key, which must be configured in APIM to activate access for the API.

You can read more about subscriptions in Azure APIM here:
https://docs.microsoft.com/en-us/azure/api-management/api-management-
subscriptions.

Subscription is the most important concept in APIM. Developers must pass
the subscription key in the HTTP request while calling the API (operation)
endpoint. Consumption data is recorded based on the subscription key.
Hence, these keys should be securely managed to prevent any malicious
access.

Subscriptions can be managed at the product level, as shown in the following
screenshot:

https://docs.microsoft.com/en-us/azure/api-management/api-management-subscriptions

Figure 9.14 – Managing subscriptions for a product

AUTHORIZATION POLICIES

To secure access to the API, additional configurations such as OAuth 2.0 or client certificates
may be implemented at the APIM layer. Hence, for the client applications to consume the API,
all the necessary information must be part of the HTTP request.

API consumption – rate l imits and quotas

Rate limits and quotas are used for the API monetization strategy. They
define the maximum limits that apply to the subscribers of the APIs.
Additionally, different subscribers can have different rate limits or quotas
based on the plans they have subscribed to.

Rate limits are used to define certain thresholds to limit the count of
requests, thereby preventing any unexpected spikes during the usage of the
API. Rate limits are also used to enforce any monetization rules relating to
the subscription limits.

Quotas are typically used to define the usage volume of an API over a long
period. This is useful for creating tiers based on usage volume targets.
Quotas are like rate limits, but they are generally used with a large window of
time.

You can read more about them here: https://docs.microsoft.com/en-
us/azure/api-management/api-management-sample-flexible-throttling#rate-
limits-and-quotas.

Now, let's review how you can make use of access restriction policies of
APIM to throttle the requests.

Access restriction policies in APIM

Access restriction policies regulate the way APIs are consumed by the
subscribers. Different policy options are available, and you can read more

https://docs.microsoft.com/en-us/azure/api-management/api-management-sample-flexible-throttling#rate-limits-and-quotas

about them here: https://docs.microsoft.com/en-us/azure/api-
management/api-management-access-restriction-policies.

The most important access restriction policies that apply to the monetization
situation are listed in the following table:

https://docs.microsoft.com/en-us/azure/api-management/api-management-access-restriction-policies

When it comes to request throttling, there are a few other additional options
that are supported by APIM, such as IP address-based or user identity-based

throttling. Depending on your specific scenario, you can use one or more
policies to limit API usage spikes from a consumer.

In the next section, we will discuss how to generate consumption reports
using APIM, which can then be fed to the billing engine to generate invoices.

Measuring API consumption

APIM provides usage reports that can be used to calculate the consumption
of the respective APIs. The data in these reports is accessible through the
REST API provided by the Azure Management SDKs.

You can find the complete list of usage reports available for APIM here:
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-01/reports.

To calculate consumption, the following reports can be used:

List by Product: List of usage data by product (reference:
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-
01/reports/list-by-product).

List by Subscription: List of usage data by subscription (reference:
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-
01/reports/list-by-subscription).

Usage consumption statistics record schema

The reports provide an array of unique usage summary records, for a
combination of product and subscriptionId, in the following format:

{

"name": "",

https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-01/reports
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-01/reports/list-by-product
https://docs.microsoft.com/en-us/rest/api/apimanagement/2019-12-01/reports/list-by-subscription

 "userId": "/users/1",

 "productId": "/products/5600b59475ff190048060002",

 "subscriptionId": "/subscriptions/5600b59475ff190048070002",

 "callCountSuccess": 13,

 "callCountBlocked": 1,

 "callCountFailed": 0,

 "callCountOther": 0,

 "callCountTotal": 14,

 "bandwidth": 11019,

 "cacheHitCount": 0,

 "cacheMissCount": 0,

 "apiTimeAvg": 1015.7607923076923,

 "apiTimeMin": 330.3206,

 "apiTimeMax": 1819.2173,

 "serviceTimeAvg": 957.094776923077,

 "serviceTimeMin": 215.24,

 "serviceTimeMax": 1697.3612

}

A daily/weekly/monthly export job can be created to copy the consumption
data to your billing and invoicing system in order to calculate the charges
based on the pricing plans defined for the products.

You must pay careful attention to your billing calculation engine, as that
could either make or break your productization strategy.

API analytics

APIM provides built-in analytics for the list of APIs published. This is useful
for analyzing the performance and usage of the various APIs.

You can read more about it here: https://docs.microsoft.com/en-us/azure/api-
management/howto-use-analytics.

You can extend the analytics capabilities by using the following options:

Stream events to Azure Event Hub (reference:
https://docs.microsoft.com/en-us/azure/api-management/api-
management-howto-log-event-hubs).

Log requests with Azure Application Insights (reference:
https://docs.microsoft.com/en-us/azure/api-management/api-
management-howto-app-insights).

It goes without saying that all strategies must be based on insights derived
from data. API Analytics is perhaps the most important tool for business
decision-makers. The usage analytics insights provide trends and patterns
about the consumers. This is useful intelligence for planning the product
roadmap, including any marketing strategies that are geared toward
improving the consumption of your APIs.

Summary
In this chapter, you have learned how APIs can generate value for an
enterprise through an intelligent monetization strategy. You have studied the
key drivers behind monetization, and the various models that can be used as
part of a productization strategy.

https://docs.microsoft.com/en-us/azure/api-management/howto-use-analytics
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-log-event-hubs
https://docs.microsoft.com/en-us/azure/api-management/api-management-howto-app-insights

An example reference architecture was also studied to explain the important
aspects involved in planning your productization strategy both from a
business and technical perspective. You should be familiar now with
applying the concepts presented in this chapter for your API publishing
requirements in Azure.

You should also be comfortable with identifying and elaborating on the
business capabilities that must be part of your backlog to implement an end-
to-end productized API platform.

APIM is a robust product offering in Azure from Microsoft. You must plan to
explore the technical capabilities it provides and start using them for your
API-centric solutions in Azure.

In this book, you have studied the benefits of API-led architectures for a
modern enterprise. You have also explored the capabilities of Azure that you
can make use of to plan and deploy your APIs using a robust DevOps life
cycle process. Additionally, you studied how effective monetization
strategies can lead to value generation through your digital assets. If you are a
business or IT decision-maker, you should be able to readily apply the
concepts to define product roadmaps and set up a high-performance
development team.

Further reading
White paper on APIM driving the API economy:
https://azure.microsoft.com/en-in/resources/azure-api-management-
driving-digital-transformation-in-todays-api-economy/

https://azure.microsoft.com/en-in/resources/azure-api-management-driving-digital-transformation-in-todays-api-economy/

Top five API monetization models: https://nordicapis.com/top-5-api-
monetization-business-models/

API monetization models, strategies, and best practices:
https://blog.api.rakuten.net/api-monetization/

How to monetize your APIs using APIM: https://azure.microsoft.com/en-
us/blog/how-to-monetize-apis-with-azure-api-management/

Use APIM for API monetization: https://github.com/Azure/api-
management-monetization

https://nordicapis.com/top-5-api-monetization-business-models/
https://blog.api.rakuten.net/api-monetization/
https://azure.microsoft.com/en-us/blog/how-to-monetize-apis-with-azure-api-management/
https://github.com/Azure/api-management-monetization

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and
videos, as well as industry leading tools to help you plan your personal
development and advance your career. For more information, please visit our
website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and
Videos from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with
PDF and ePub files available? You can upgrade to the eBook version at
packt.com and as a print book customer, you are entitled to a discount on the
eBook copy. Get in touch with us at customercare@packtpub.com for more
details.

http://Packt.com
http://packt.com

At www.packt.com, you can also read a collection of free technical articles,
sign up for a range of free newsletters, and receive exclusive discounts and
offers on Packt books and eBooks.

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by
Packt:

Enterprise API Management

Luis Weir

ISBN: 978-1-78728-4-432

Comprehensive, end-to-end guide to business-driven enterprise APIs

Distills years of experience with API and microservice strategies

Provides detailed guidance on implementing API-led architectures in any
business

http://www.packt.com
https://www.packtpub.com/product/enterprise-api-management/9781787284432

The Azure Cloud Native Architecture Mapbook

Stephane Eyskens, Ed Price

ISBN: 978-1-80056-2-325

Discover the key drivers of successful Azure architecture

Implement architecture maps as a compass to tackle any challenge

Understand architecture maps in detail with the help of practical use cases

Packt is searching for authors l ike you
If you’re interested in becoming an author for Packt, please visit
authors.packtpub.com and apply today. We have worked with thousands of
developers and tech professionals, just like you, to help them share their
insight with the global tech community. You can make a general application,
apply for a specific hot topic that we are recruiting an author for, or submit
your own idea.

https://www.packtpub.com/product/the-azure-cloud-native-architecture-mapbook/9781800562325
http://authors.packtpub.com

Share Your Thoughts
Now you've finished Designing API-First Enterprise Architectures on Azure,
we'd love to hear your thoughts! If you purchased the book from Amazon,
please click here to go straight to the Amazon review page for this book and
share your feedback or leave a review on the site that you purchased it from.

Your review is important to us and the tech community and will help us make
sure we're delivering excellent quality content.

Contents

1. Designing API-First Enterprise Architectures on Azure
2. Contributors
3. About the author
4. About the reviewer
5. Preface

1. Who this book is for
2. What this book covers
3. To get the most out of this book
4. Download the color images
5. Conventions used
6. Get in touch
7. Share Your Thoughts

6. Section 1: API-Led Architecture in the Digital Economy
7. Chapter 1: Evolution of Enterprise Solution Architectures

1. History of application architectures in an enterprise
1. From monoliths to SOA and microservices

2. IT strategies in the modern world
1. Outlook for digital transformation

3. The emergence of API-led architectures
1. The complexity problem

4. The importance of API-led architecture
5. Case study

1. About Packt Insurance Inc.
6. Summary
7. Further reading

8. Chapter 2: APIs as Digital Connectors
1. The connected enterprise
2. The role of APIs in digital experiences

1. Major benefits of API-led connectivity
2. APIs serve as digital enablers for an enterprise

3. An API is a digital service
1. API architecture within an enterprise
2. API classification by management and access pattern

4. Packt Insurance Inc. – an API-led architecture strategy

1. Domain decomposition
2. Service and persona map
3. API composability using microservices

5. Summary
6. Further reading

9. Section 2: Build Reliable API-Centric Solutions
10. Chapter 3: Architecture Principles and API Styles

1. Architecture principles
2. Evolve architecture blueprints iteratively
3. Constructs of an API

1. API operations or service contract
2. Data contract or entity schema
3. API endpoint
4. Communication protocol (application layer)
5. Input and output – the request-response pair

4. Popular API architecture styles
1. The tunneling or RPC style
2. RI (or REST) style
3. Query or GraphQL style
4. Event-driven or asynchronous messaging style
5. Hypermedia style
6. Other API styles

5. Finding the right style for your API use cases
6. Serverless APIs – accelerators for innovation

1. Benefits of using serverless computing for APIs
2. Serverless architecture use cases

7. Implementing API-led architectures in Azure
1. Reference architecture for an enterprise API platform
2. Azure services for hosting API solutions
3. Service Fabric
4. Additional services for building end-to-end solutions

8. Case study elaboration – Packt Insurance Inc.
1. API style fitment analysis
2. Microservices and API styles
3. API platform architecture

9. Summary
10. Additional reading

11. Chapter 4: Assuring the Quality of the API Service (or Product)
1. The ISO 25010 standard for software product quality

1. Functional Suitability
2. Operability/Usability
3. Reliability
4. Performance Efficiency
5. Security
6. Compatibility
7. Maintainability
8. Portability

2. Architecture Tradeoff Analysis Method (ATAM)
3. The Azure Well-Architected Framework

1. Benefits of using WAF
2. WAF recommended practices

4. API security considerations
1. Core principles – the Security Frame analysis
2. The Security Development Lifecycle (SDL)

5. Reliability through scale, performance, availability
1. Site Reliability Engineering (SRE)
2. How do you ensure appropriate reliability?
3. Commonly used SLOs for an API service
4. Defining, implementing, and measuring SLI metrics for an

API platform
5. Using SLIs to calculate the initial SLOs for your API service

6. Modeling performance based on scale requirements
1. The API (or application) performance management lifecycle
2. Checklist for development teams

7. High-availability patterns
1. High-availability calculation

8. Architecting for operations
1. Logging, monitoring, and alerts
2. Feature flags

9. Understanding maintainability
1. Proactive maintainability
2. Reactive maintainability

10. Tracking objectives using a quality dashboard
11. Case study elaboration – Packt Insurance Inc.

1. Important SLOs for the API platform
2. Architecture backlog – focus on quality and handle technical

debt
12. Summary
13. Further reading

12. Chapter 5: RESTful APIs – the New Web
1. Technical requirements
2. Understanding RESTful APIs

1. Using HTTP verbs for your CRUD actions correctly
2. History of inter-machine application communication

3. REST architecture constraints
4. Advantages and challenges of building a RESTful API

1. Advantages
2. Common challenges

5. Exploring the checklist for building RESTful APIs
1. Contract-first design for your REST APIs

6. OpenAPI Specification
1. OpenAPI definition file format
2. Visualizing the API definition file using the Swagger

extension in VSCode
7. Summary
8. Further reading

13. Chapter 6: API Design Practices
1. Understanding API design considerations

1. Coupling
2. Chattiness
3. Client complexity
4. Cognitive complexity
5. Caching
6. Discoverability
7. Versioning

2. Exploring recommended practices
1. Design should adhere to the SOLID principles
2. Design should be flexible to change
3. Use the Decision Analysis and Resolution technique
4. Produce documentation as per industry standards
5. Secure by design

6. Optimized for response time
7. API testing
8. Size and granularity
9. Content negotiation

10. Prefer stateless over stateful services
11. User-digestible response codes and messages
12. Using cloud design patterns

3. Implementing an API service using design patterns
1. Data-driven CRUD API
2. Command and Query Responsibility Segregation (CQRS)
3. Event Store API (Event Sourcing)
4. Clean architecture
5. Backends for Frontends (BFF)

4. Developer toolbox
5. Summary
6. Further reading

14. Chapter 7: Accelerating through DevOps Essentials
1. Business objectives and key results
2. The DevOps Dojo framework

1. The benefits of having a good DevOps strategy
3. DevOps metrics and their importance
4. Identifying the maturity index for your enterprise
5. The power of GitHub and Azure DevOps
6. DevOps in practice

1. Capability – continuous planning
2. Capability – continuous integration
3. Capability – continuous delivery
4. Capability – continuous operations
5. Capability – continuous quality
6. Capability – continuous security
7. Capability – continuous collaboration
8. Capability – continuous improvement
9. Pillar – culture

10. Pillar – lean product
11. Pillar – architecture
12. Pillar – technology

7. Tracking DevOps initiatives in the backlog

8. Summary
9. Further reading

15. Section 3: Deliver Business Value for a Modern Enterprise
16. Chapter 8: API-Centric Enterprise Integrations

1. Exploring EAI
1. Key initiatives toward a digital enterprise
2. Modernizing legacy applications using APIs
3. API use cases in the enterprise

2. The rise of iPaaS
1. What is an iPaaS platform?
2. Types of integrations
3. Benefits of iPaaS
4. iPaaS architecture for the Azure cloud

3. Implementing EAI patterns using iPaaS
4. API management

1. API gateways
2. API publishing, control, and governance
3. Developer portal
4. API versioning and life cycle management
5. Analytics and metrics

5. Understanding Azure Integration Services
1. iPaaS building blocks of Azure – explained
2. Using Azure Integration Services

6. Summary
7. Further reading

17. Chapter 9: APIs as a Monetized Product
1. APIs as digital assets

1. Growth of the API economy
2. The API value chain

2. Exploring business drivers of monetization
1. Expand the channels of revenue streams
2. Capture analytics for improved marketing strategies
3. Enhance brand value through customer loyalty
4. Foster innovation through new product capabilities
5. Stay relevant in the marketplace

3. API monetization models
1. Free

2. Consumer pays
3. Consumer gets paid
4. Indirect monetization

4. API productization in Azure
1. Requirements summary
2. Solution approach
3. API products and publishing in APIM
4. Subscription management
5. API consumption – rate limits and quotas
6. Measuring API consumption
7. API analytics

5. Summary
6. Further reading
7. Why subscribe?

18. Other Books You May Enjoy
1. Packt is searching for authors like you
2. Share Your Thoughts

Landmarks

1. Cover
2. Table of Contents

	Designing API-First Enterprise Architectures on Azure
	Contributors
	About the author
	About the reviewer
	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the color images
	Conventions used
	Get in touch
	Share Your Thoughts

	Section 1: API-Led Architecture in the Digital Economy
	Chapter 1: Evolution of Enterprise Solution Architectures
	History of application architectures in an enterprise
	From monoliths to SOA and microservices

	IT strategies in the modern world
	Outlook for digital transformation

	The emergence of API-led architectures
	The complexity problem

	The importance of API-led architecture
	Case study
	About Packt Insurance Inc.

	Summary
	Further reading

	Chapter 2: APIs as Digital Connectors
	The connected enterprise
	The role of APIs in digital experiences
	Major benefits of API-led connectivity
	APIs serve as digital enablers for an enterprise

	An API is a digital service
	API architecture within an enterprise
	API classification by management and access pattern

	Packt Insurance Inc. – an API-led architecture strategy
	Domain decomposition
	Service and persona map
	API composability using microservices

	Summary
	Further reading

	Section 2: Build Reliable API-Centric Solutions
	Chapter 3: Architecture Principles and API Styles
	Architecture principles
	Evolve architecture blueprints iteratively
	Constructs of an API
	API operations or service contract
	Data contract or entity schema
	API endpoint
	Communication protocol (application layer)
	Input and output – the request-response pair

	Popular API architecture styles
	The tunneling or RPC style
	RI (or REST) style
	Query or GraphQL style
	Event-driven or asynchronous messaging style
	Hypermedia style
	Other API styles

	Finding the right style for your API use cases
	Serverless APIs – accelerators for innovation
	Benefits of using serverless computing for APIs
	Serverless architecture use cases

	Implementing API-led architectures in Azure
	Reference architecture for an enterprise API platform
	Azure services for hosting API solutions
	Service Fabric
	Additional services for building end-to-end solutions

	Case study elaboration – Packt Insurance Inc.
	API style fitment analysis
	Microservices and API styles
	API platform architecture

	Summary
	Additional reading

	Chapter 4: Assuring the Quality of the API Service (or Product)
	The ISO 25010 standard for software product quality
	Functional Suitability
	Operability/Usability
	Reliability
	Performance Efficiency
	Security
	Compatibility
	Maintainability
	Portability

	Architecture Tradeoff Analysis Method (ATAM)
	The Azure Well-Architected Framework
	Benefits of using WAF
	WAF recommended practices

	API security considerations
	Core principles – the Security Frame analysis
	The Security Development Lifecycle (SDL)

	Reliability through scale, performance, availability
	Site Reliability Engineering (SRE)
	How do you ensure appropriate reliability?
	Commonly used SLOs for an API service
	Defining, implementing, and measuring SLI metrics for an API platform
	Using SLIs to calculate the initial SLOs for your API service

	Modeling performance based on scale requirements
	The API (or application) performance management lifecycle
	Checklist for development teams

	High-availability patterns
	High-availability calculation

	Architecting for operations
	Logging, monitoring, and alerts
	Feature flags

	Understanding maintainability
	Proactive maintainability
	Reactive maintainability

	Tracking objectives using a quality dashboard
	Case study elaboration – Packt Insurance Inc.
	Important SLOs for the API platform
	Architecture backlog – focus on quality and handle technical debt

	Summary
	Further reading

	Chapter 5: RESTful APIs – the New Web
	Technical requirements
	Understanding RESTful APIs
	Using HTTP verbs for your CRUD actions correctly
	History of inter-machine application communication

	REST architecture constraints
	Advantages and challenges of building a RESTful API
	Advantages
	Common challenges

	Exploring the checklist for building RESTful APIs
	Contract-first design for your REST APIs

	OpenAPI Specification
	OpenAPI definition file format
	Visualizing the API definition file using the Swagger extension in VSCode

	Summary
	Further reading

	Chapter 6: API Design Practices
	Understanding API design considerations
	Coupling
	Chattiness
	Client complexity
	Cognitive complexity
	Caching
	Discoverability
	Versioning

	Exploring recommended practices
	Design should adhere to the SOLID principles
	Design should be flexible to change
	Use the Decision Analysis and Resolution technique
	Produce documentation as per industry standards
	Secure by design
	Optimized for response time
	API testing
	Size and granularity
	Content negotiation
	Prefer stateless over stateful services
	User-digestible response codes and messages
	Using cloud design patterns

	Implementing an API service using design patterns
	Data-driven CRUD API
	Command and Query Responsibility Segregation (CQRS)
	Event Store API (Event Sourcing)
	Clean architecture
	Backends for Frontends (BFF)

	Developer toolbox
	Summary
	Further reading

	Chapter 7: Accelerating through DevOps Essentials
	Business objectives and key results
	The DevOps Dojo framework
	The benefits of having a good DevOps strategy

	DevOps metrics and their importance
	Identifying the maturity index for your enterprise
	The power of GitHub and Azure DevOps
	DevOps in practice
	Capability – continuous planning
	Capability – continuous integration
	Capability – continuous delivery
	Capability – continuous operations
	Capability – continuous quality
	Capability – continuous security
	Capability – continuous collaboration
	Capability – continuous improvement
	Pillar – culture
	Pillar – lean product
	Pillar – architecture
	Pillar – technology

	Tracking DevOps initiatives in the backlog
	Summary
	Further reading

	Section 3: Deliver Business Value for a Modern Enterprise
	Chapter 8: API-Centric Enterprise Integrations
	Exploring EAI
	Key initiatives toward a digital enterprise
	Modernizing legacy applications using APIs
	API use cases in the enterprise

	The rise of iPaaS
	What is an iPaaS platform?
	Types of integrations
	Benefits of iPaaS
	iPaaS architecture for the Azure cloud

	Implementing EAI patterns using iPaaS
	API management
	API gateways
	API publishing, control, and governance
	Developer portal
	API versioning and life cycle management
	Analytics and metrics

	Understanding Azure Integration Services
	iPaaS building blocks of Azure – explained
	Using Azure Integration Services

	Summary
	Further reading

	Chapter 9: APIs as a Monetized Product
	APIs as digital assets
	Growth of the API economy
	The API value chain

	Exploring business drivers of monetization
	Expand the channels of revenue streams
	Capture analytics for improved marketing strategies
	Enhance brand value through customer loyalty
	Foster innovation through new product capabilities
	Stay relevant in the marketplace

	API monetization models
	Free
	Consumer pays
	Consumer gets paid
	Indirect monetization

	API productization in Azure
	Requirements summary
	Solution approach
	API products and publishing in APIM
	Subscription management
	API consumption – rate limits and quotas
	Measuring API consumption
	API analytics

	Summary
	Further reading
	Why subscribe?

	Other Books You May Enjoy
	Packt is searching for authors like you
	Share Your Thoughts

